

Tu01D-4

A 74.8-88.8 GHz Wideband CMOS LNA Achieving +4.73 dBm OP1dB and 6.39 dB Minimum NF

Linfeng Zou¹, Kangjie Zhao¹, Zonghua Fang¹, Leilei Huang¹, Boxiao Liu¹, Chunqi Shi¹, Guangsheng Chen², Jinghong Chen³, Runxi Zhang¹

¹IMCS, East China Normal University, Shanghai, China ²Shanghai Eastsoft Microelectronics Co. Ltd., Shanghai, China ³ECE, University of Houston, Houston, USA

Outline

- Motivation and Challenges
- Wideband LNA in 55nm CMOS

Measurement Results

Motivation

- Broadband mmWave transceivers are needed to support 5G and beyond high data-rate wireless communication and high-resolution wireless sensing applications
- Nanoscale CMOS is attractive offering high integration density, cost-efficient and high-yield solutions
- LNA plays an important role in defining the receiver noise figure (NF) and bandwidth (BW)

IMS Challenges and Proposed Solutions

- Challenging to simultaneously achieve NF, BW, linearity and area efficiency
 - Wide bandwidth is achieved at the expense of a large die area and severe passive network loss
 - Transmitter leakage and isolation between antennas degrade linearity
 - Broadband input matching limits the noise performance
- Proposed solutions
 - Hybrid broadband inter-stage network for wide BW
 - Inductor-feedback common-gate-shorting for high gain and high OP1dB
 - Out-of-phase-dual-coupling for low noise and high gain

Outline

Motivation and Challenges

Wideband LNA in 55nm CMOS

Measurement Results

74.8-88.8 GHz CMOS LNA

4 stage: 1 CG+1 CS+2 Cascode, differential topology, single-ended input and output

Hybrid Broadband Interstage Network (HBIN) for Wide Bandwidth

(a) $|Z_{21}|$ of step-even/up transformer

(b) $|Z_{21}|$ of step-down transformer

Simulation Results of HBIN

(a) $|Z_{21}|$ of Interstage Coupling network (b) Comparison of Overall S_{21} and $|Z_{21}|$

Connecting Minds. Exchanging Ideas.

IMS Inductor-Feedback Common-Gate-Shorting

(IFCGS) for High Gain and High OP1dB

(a) IFCGS circuit

- (b) Equivalent circuit
- (c) Leakage analysis

$$I_{out} \approx I_{in} \cdot rac{g_m}{\left\{g_m + s \left[C_{sb2}\left(1 - \omega^2 rac{L_1}{2}C_{gs2}\right) + C_{gs2}\right]\right\}}$$

Simulation Results of IFCGS

L1=10 pH, MSG improved by 9.5 dB, OP1dB improved by 8.6 dB

(b) Stability simulation

(a) MSG simulation

(c) OP1dB simulation

Out-of-Phase-Dual-Coupling (OPDC) for Low Noise and High Gain

(a) OPDC CG circuit

(c) Equivalent circuit

(b) Input balun

voltage gain:
$$\frac{V_{out}}{V_{in}} = (n_g K_{12} + n_s K_{13}) g_m R_D$$

$$NF = 1 + \frac{\gamma}{(n_q K_{12} + n_s K_{13})}$$

$$+\frac{4}{(n_g K_{12}+n_s K_{13})g_m R_D}$$

Simulation Results of OPDC

CASE1: $K_{12}=0.65 K_{13}=0.67 L_g=129 pH L_s=180 pH$

CASE2: $K_{12}=0.73 K_{13}=0.74 L_q=129 pH L_s=136 pH$

CASE1: $K_{12}=0.65 K_{13}=0.67 L_g=129pH L_s=180pH$ CASE2: $K_{12}=0.73 K_{13}=0.74 L_g=129pH L_s=136pH$

In CASE2, MSG improved by 6 dB, NF decreased by 0.7 dB

Outline

Motivation and Challenges

Wideband LNA in 55nm CMOS

Measurement Results

Die Photo of the Proposed LNA

Process: 55-nm CMOS, Area: 895*120µm²

MS Simulated and Measured S-parameters

Large Signal Measurement Results

NF Measurement Results

Performance Comparison

Ref	[10] JSSC 2017	[11] TMTT 2020	[12] RFIC 2020	[8] IMS 2020	[13] MWCL 2022	This Work
Technology	28nm CMOS	22nm FDS0I	65nm CMOS	55nm CMOS	40nm CMOS	55nm CMOS
Topology	1-stage CG 4-stage CS	3-stage CSCG	3-stage CS	2-stage CS 1-stage CSCG	3-stage CS	1-stage CG 1-stage CS 2-stage CSCG
Structure	Differential	Single-ended	Differential	Differential	Differential	Differential
Peak Gain(dB)	29.6	24	25	15	19	17.1
BW _{3dB} (GHz)	28.3 (68.1-96.4)	13 (70.5-83.5)	7.5 (53.5-61)	7.6 (78.9-86.5)	16.1 (76.5-92.6)	14 (74.8-88.8)
Minimum NF(dB)	6.4	4.6	4.8	5	5.7	6.39
IP1dB(dBm)	-28.1	-26.8	-22	-13.2	-19	-12.37
OP1dB(dBm)	+1.5	-2.8#	+3.0#	+1.8#	O#	+4.73
P _{DC} (mW)	31.3	16	47	72.7	23.4	72.4
Area(mm²)	0.675	0.35	0.26	0.08	0.17	0.107*
FOM₁	12.57	14.28	8.86	13.01	26.84	24.29

[#] Estimated values

 $FOM_1 = Gain[lin] \cdot BW_{-3dB}[MHz] \cdot IP1dB[lin]/\{P_{dc}[mW] \cdot (F-1)\}$

^{*} Area excluding bondpads

Outline

Motivation and Challenges

Wideband LNA in 55nm CMOS

Measurement Results

- Hybrid step-even and step-down interstage coupling network to achieve high bandwidth
- Inductor-Feedback Common-Gate-Shorting to simultaneously obtain high gain and high OP1dB
- Out-of-Phase-Dual-Coupling to achieve high gain and low noise
- Measurement results of the 55nm CMOS LNA demonstrated a -3dB bandwidth of 14 GHz, a 17.1 dB peak gain, a minimum NF of 6.39 dB, and 4.73 dBm OP1dB

Thank you!

Q&A

