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Introduction

• For modern millimeter-wave (MMW) applications, such as radar,

and 5G communication [1], the local oscillator (LO) is a critical

component.

• Phase-locked loop(PLL) is generally used to be the local oscillator

in the transceiver system.

• As the operating frequency is up to MMW bands, the phase noise

and DC power consumption have been challenged.
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Introduction (Cont’d)

• Frequency-tracking loop (FTL)

used injection-locked technique

can provide low phase noise, and

its DC consumption is lower

than PLL due to the divider-less

topology.

• But the frequency ratio of the

reference frequency to output

frequency can not be too high.

PD&CP LPF VCO

Divider

Ref.

FD&VI 

converter
SILVCO

Ref.
LPF

(a)Phase-locked loop

(b)Frequency-tracking loop

VCO out

VCO out



5 Tu1E-2

Previously Reported Approach [4]

• Operating frequency is from 22.35 to 25.31 GHz.

• Peak output power and peak efficiency are 4.37 dBm and 10.9%.

[4] Y.-T. Chang and H.-C. Lu, “A K-band high-efficiency VCO using current reused technique,” IEEE Microw. Compon. Lett., vol. 27, no. 12, pp. 1134-1136, Dec. 2017.
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Previously Reported Approach [15]

• K- and V-band subharmonic injection-locked frequency triples.

• K-band locking range is 1.1 GHz, V-band locking range is 1.4 GHz.

[15]M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 8, pp. 

1869–1878, Aug. 2008.
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Single-Stage Injector

➢ Calculation of the normalized amplitude for

2nd, 3rd, and 6th harmonic drain currents

versus conduction angle.

➢ Simulation of the 2nd, 3rd, and 6th direct current

and harmonic current versus Vbias.
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Cascade Injector

• VBias=0.1 V and VBias2=0.6 V
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Comparison of Injectors

(a)Series coupling (b) Transformer coupling and 

(c)cascade-series Coupling
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How Frequency Detector works

• As the SILVCO output frequency is compared to the injected signal, the frequency detector's output voltages V+

and V- would correspond to the frequency lead and lag.

• The average voltages V+avg and V-avg after the C1 and C2 will be amplified using the V/I converter to control the

output frequency of the SILVCO.

N・fref > fvco , ΔV+avg   ΔV-avg , Vtune  N・fref < fvco , ΔV+avg   ΔV-avg , Vtune  

N・fref = fvco , ΔV+avg=ΔV-avg , Vtune lock

fref 

Q+ 

Q- 

V- V+ 

Q+

Q-

FD_Vs

FD_Vg

FD_Vg

R1

R2

C1

C2

V-avg To V/I Converter

V+avg To V/I ConverterV+

V-
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Illustrated Waveform of FTL

Output Voltage of Vtune Compared Voltage
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TSMC 90 nm CMOS Process

• Taiwan Semiconductors Manufacturing Company (TSMC) commercial 90

nm CMOS process.

• NMOS unity current gain frequency (fT) is higher than 100 GHz.

• NMOS maximum oscillation frequency (fmax) is higher than 150 GHz.

• Metal-insulator-metal capacitor and polysilicon resistors are available in the

process.
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Schematic of the Proposed Circuit 

• M3-M4 Cross-coupled Pair

• M5-M6 Output Buffer

• M1-M2,M7-M8 Injector

• M9,M10 Frequency Detector

• Vdd=2.1 V/9 mA

• Vdd1 _inj=0.6 V

• Vbias1_inj=0.1 V

• Vdd_v/i=1.2 V

• FD_Vs= 0.8V

• FD_Vg= 0.1V
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Chip Photograph & Meas. Setup

• Chip Size:

0.746×0.781 mm2
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Meas. Output Freq. & Power

• Operating Frequency:

51.2~53.13 GHz

• Output Power:

-0.11~1.19 dBm
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Meas. Output Spectra

• Measured 52 GHz spectra with (a) free-running (span 100MHz), (b) locked oscillator

(span 1MHz), and (c) locked FTL (span 1MHz).
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Meas. Output Spectra (0.1 – 75 GHz)
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• Harmonic suppression is better than -40 dBc for the locked condition
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Meas. Phase Noise & RMS Jitter

• Phase noise@ 100 kHz is lower than -105 dBc/Hz.

• RMS Jitter is within 43.01 fs which integrated 1kHz to 10 MHz.
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Comparison with Prior Art

• # core only, $ quadrature output power, &BiCMOS

Ref.
Tech.

(CMOS)
Topo.

Freq.

(GHz)

Tuning Range

Locking Range

(GHz)

Pout

(dBm)

PN@1MHz

(dBc/Hz)

PDC

(mW)

Area

(mm2)
FoM FoMP N

(GHz) (%)

[5] 90 nm SILQVCO 59 2.4 4.2 3.5 -15 -126.8 19.8 0.12# -186.2 -177.2 3

[6] 0.13 µm& Dif. ILVCO 54.1 9.6 17 <1.4 -10.9 -105 <6.6 0.02 -164.7 -156.8 8

[7] 65 nm Quad. FTL 33 6 18.2 6.6 -8 -130.3 31.3 0.7 -191.6 -189.6 3

[8] 90 nm Mod. FTL 39 2 5.1 3.1 -12 -126 60 1.24 -184.8 -178.8 4

[10] 90 nm SILQFLL 50.2 2.4 4.9 3.5 -12 -103.4 75.4 1.47 -164.4 -158.4 32

This

work
90 nm

TC & CSC 

FTL
52.2 1.94 3.7 2.48 0

-109.4@100 kHz

-111.6@1 MHz
23 0.58

-197.9

-180.1

-199.1

-181.3
6
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Conclusion

• A V-band sextuple SILVCO with FTL is successfully developed using a 90-

nm CMOS process.

• The locking range is highly enhanced using the cascade-series coupling, and

the sub-harmonic number is up to 6.

• This work features low-phase noise, compact size, and high frequency.
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