

Tu1E-4

V-Band LC-VCO and Doubler with Wide Tuning Range and Low Phase Noise Using Series-Shunt Anti-Parallel SiGe HBT Switches

Wonsub Lim¹, Arya Moradinia¹, Sanghoon Lee¹, Clifford D. Cheon¹, Christopher T. Coen², Nelson E. Lourenco², and John D. Cressler¹

¹Georgia Tech, Atlanta, USA

²Advanced Concepts Laboratory, Georgia Tech Research Institute, Atlanta, USA

Outline

- Motivation and Problem Statement
- Proposed SSAP Capacitor Bank
- VCO Implementation
- Measurement Results
- Summary

Phase Noise Challenges at Mm-wave

 Mobile communication and radar systems require wide bandwidth and low phase noise

Connecting Minds. Exchanging Ideas. Tuning Range Challenges at Mm-wave

Tuning range decreases as frequency increases

$$f_{osc} = \frac{1}{2\pi\sqrt{L_T(C_{var} + C_b + C_{fix})}}$$

[W. Wang, BCICTS'19]

Frequency	10 GHz	20 GHz	40 GHz		
Inductance (pH)	438	295	182		
madetance (pm)					

Limitations for Prior Designs

[H. Jia, ISSCC'21]

Low phase noise

Narrow tuning range

[Z. Zong, JSSC'16]

High phase noise

Wide tuning range

- Transformer-coupled QVCO has low PN but narrow FTR
- Magnetically tuned VCO has wide FTR but high phase noise
- How to improve both PN and FTR?

Outline

- Motivation and Problem Statement
- Proposed SSAP Capacitor Bank
- VCO Implementation
- Measurement Results
- Summary

Proposed SSAP SiGe HBT Switch

- Series-Shunt Anti-Parallel (SSAP) SiGe HBT switch uses a series-shunt switch topology in an anti-parallel fashion
- Low series R_{on}, high shunt R_{off}, and low parasitic capacitance

IMS Switched Capacitor Bank Comparison Someoning Minds. Exchanging Ideas.

 The proposed SSAP capacitor bank shows 29% higher Q and 1.5 dB PN improvement compared to the CMOS pair

Outline

- Motivation and Problem Statement
- Proposed SSAP Capacitor Bank
- VCO Implementation
- Measurement Results
- Summary

Inductor and Varactor Layout

- 49.4 pH with Q of 27.6 at 30 GHz Inductor
 - low PN and wide FTR

$$FTR = 2 \frac{\sqrt{\Delta C_{max} + C_{fix}} - \sqrt{C_{fix}}}{\sqrt{\Delta C_{max} + C_{fix}} + \sqrt{C_{fix}}}$$
 $PN (\Delta w) \propto \frac{w^3 L}{A^2 Q}$

- A PIN-diode varactor
 - $-146.7 \sim 200 \text{ fF at } 0V \sim 2.3V$
 - linear voltage characteristics
- Minimized the length of the transmission lines

Schematic and Simulation Results

- 5-bit SSAP capacitor bank
- Class C type VCO
 - Low PN
- Independent push-push doubler
 - High Fundamental Rejection

Component name	Value				
L ₁	49.4 pH				
L ₂	69 pH				
Cvar	146.7 fF - 200 fF				
Cunit	25.4 fF				
C1, C2	270 fF				
C ₃ , C ₄	450 fF				
C 5	83 fF				
C ₆	357 fF				
C ₇ , C ₈	270 fF				
C_{9} , C_{10}	405 fF				
$M_1 - M_6$	16 µm				
M ₇ , M ₈	2.6 µm				

Chip Micrograph of the VCO

- 130-nm GlobalFoundries 8XP SiGe BiCMOS process
- Compact die size : 370um × 150um = 0.055mm²

Outline

- Motivation and Problem Statement
- Proposed SSAP Capacitor Bank
- VCO Implementation
- Measurement Results
- Summary

Measurement Setup

- Keysight E5052B was used to measure operating frequency and the accurate phase noise
- The output power of the oscillator was measured with the Keysight power sensor (U8488A)

Measured FTR and kVCO

- Oscillation frequency covers 47 GHz to 64 GHz (FTR: 31%)
- kVCO is 470 MHz/V on average, with 820 MHz/V at maximum

Measured Phase Noise

Measured Phase Noise

Measured PN and FOM

- PN @ 1MHz: -95 to -105 dBc/Hz
- FOM @ 1MHz: -171.3 to -180.3 dBc/Hz

Comparison Table

Reference	This Work	JSSC' 22 [1]	TMTT' 16 [2]	ISSCC' 21 [3]	TMTT' 15 [4]	JSSC' 13 [5]	JSSC' 16 [6]	TMTT' 15 [7]
Neierence	TIIIS VVOIR	JJJC ZZ [1]	110111 10 [2]	13300 21 [3]	110111 13 [4]	1336 13 [3]	1336 10[0]	110111 13[/]
Technology	130nm	28nm	95nm	65nm	65nm	65nm	40nm	65nm
	SiGe	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS
Number of Cores	1	4	4	4	1	1	1	1
Tuning Range (GHz)	47 to 64.3	55 to 62.8	51.7 to 56.6	52.4 to 60.4	55.1 to 70.4	57.5 to 90.1	48.4 to 62.5	47.6 to 71
	(31.2%)	(13.4%)	(9.1%)	(14.2%)	(24.6%)	(44.2%)	(25.4%)	(39.5%)
Output Power (dBm)	-7 to 0	-5 to -1	NA	NA	-15 to -10	-20 to -25	-14 to 6	NA
Power consumption (mW)	58 to 78	15.3	24	22.5 to 23.6	21.5	8.4 to 10.8	10.5	8.9 to 10.4
PN @ 1MHz (dBc/Hz)**	-105	-95	-95.5	-104.7	-92.2	-86*	-100.1	-92*
PN @ 10MHz (dBc/Hz)**	-127.5	-121.7	-119.2	-130*	-115	-112.2	-122.3	-113.4
FOM @ 1MHz (dBc/Hz)**	-180.3	-178	-176.7	-186.5	-174.9	-173.9*	-181.5	-176*
FOM @ 10MHz (dBc/Hz)**	-182.8	-184.7	-180.4	-191.8	-177.7	-180	-183.7	-179
FOM⊤ @ 1MHz (dBc/Hz)**	-190.2	-180.7	-175.9	-189.6	-182.7	-186.8*	-189.6	-187.8*
FOM⊤ @ 10MHz (dBc/Hz)**	-192.7	-187.4	-179.6	-194.9*	-185.5	-192.2	-191.8	-190.3

$$FOM = PN\left(\Delta f\right) + 10\log\left(\frac{P_{DC}}{1mW}\right) - 20\log\left(\frac{f_{osc}}{\Delta f}\right), FOM_T = FOM - 20\log\left(\frac{FTR(\%)}{10\%}\right)$$

^{*} estimated from the Figure; ** Reporting best-case for each publication

PN and FTR Comparison

Proposed VCO achieved both low PN and wide FTR

<Comparison of PN and FTR with recent 50–63GHz state-of-the-art VCOs>

Summary

- The first VCO using the novel Series-Shunt Anti-Parallel SiGe HBT Switches
 - Symmetric structure
 - 29% higher Q than CMOS pair
- Achieved wide FTR of 31% and low PN of -105 dBc/Hz at 1 MHz offset at 50 GHz
 - FOM_T of -190.2 dBc/Hz at 1MHz offset
- An attractive candidate topology for V-band VCO applications

