

Tu1E-319-AP775

A 110-GHz Push-Push Balanced Colpitts Oscillator Using 0.15-µm GaN HEMT Technology

Jiayou Wang¹², Yin-Cheng Chang³, Yeke Liu¹, Sih-Han Li¹⁴, Da-Chiang Chang³, Yi Huang², and Shawn S. H. Hsu¹

^Institute of Electronics Engineering, National Tsing Hua University, Hsinchu, Taiwan

#Department of Electrical Engineering and Electronics, The University of Liverpool, Liverpool, The UK

*Taiwan Semiconductor Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan

\$Industrial Technology Research Institute, Hsinchu, Taiwan

Outline

- Introduction and Background
- Recent Development in GaN Transistors
- Topology of the Oscillator
- Development of a Three-terminal Small Signal Model
- Oscillator Design and Optimization
- Measurement Results
- Comparison
- Conclusion

Introduction and Background

Self-injection locked doppler radar

Superior electron velocity and electric field strength

IMS Recent Development in GaN Transistors Connecting Minds. Exchanging Ideas.

- GaN on Si
- T-shaped gate—Gate length of 55 nm
- Regrown n++-GaN source and drain contacts
- Reduced parasitic resistance
- f_{max} 204 GHz / f_T 250 GHz

- GaN on SiC
- Reduced parasitic capacitance and transit time
- f_{max} 239.5 GHz / f_T 331.5 GHz

Topology of the Osicllator

Schematic of the push-push structure

Differential operation

Die photo

Development of Three-terminal Small Signal Model

12-parameter small signal model

S-parameter comparison between the proposed model and foundry model

Oscillator Design and Optimization

(a) Negative resistance of the balanced core and the equivalent capacitance C_s of TL_s versus the length of TL_s (b) Return loss and insertion loss of the two CPWs with and without the TWVs.

Measurement Results

Measured (a) spectrum and (b) phase noise of the proposed oscillator.

 2^{nd} harmonic frequency and P_{out} v.s. V_{G}

Comparison with the State-of-the-art

Refs	GaN HEMT Tech.	Topology	Frequency (GHz)	f ₀ /f _T	f ₀ /f _{ma}	P _{out} (dBm)	P _{DC} (mW)	PN (dBc/Hz)
[1]	60 nm	Push-push	180.6*	0.47	0.36	9.3	920	- 88.2@10MH z
[2]	60 nm	Common-gate Colpitts	84	0.44	0.34	-0.67	340	- 120@10MHz
[3]	100 nm	Single-end	89.2	1.11	0.44	10.2	650	-90.2@1MHz
This work	150 nm	Push-push balanced Colpitts	109.5*	1.71	0.4	-2.1	295.5	-77.4@1MHz - 110.8@10M Hz

^{1.} D. Kim and S. Jeon, "W- and g-band gan voltage-controlled oscillators with high output power and high efficiency," *IEEE Trans. Microwave Theory Tech.*, 2021, vol. 69, no. 8, pp. 3908-3916, Aug. 2021

^{3.} R. Weber, D. Schwantuschke, P. Bruckner, R. Quay, F. v. Raay, and O. Ambacher. "A 92 GHz GaN HEMT voltage-controlled oscillator MMIC," in *Proc. IMS'14*, 2014, p. 1-4.

^{2.} T. N. Thi Do, Y. Yan, and D. Kuylenstierna, "A low phase noise w-band mmic gan hemt oscillator," in *Proc. APMC*'20, 2020, p. 113-115.

Conclusion

- A W-band push-push oscillator was proposed and designed.
- In-house 3-terminal small signal model was developed
- Colpitts feedback oscillator was proposed and optimized
- Measured performance exhibits competitivity among reported GaN oscillators
- The proposed oscillator is well-suited for future millimetre wave and sub-THz radar and imaging systems

Thank you

