

Tu2A-1

Beam-Dependent Active Array Linearization by Global Feature-Based Machine Learning

M. Mengozzi¹, G. P. Gibiino¹, A. M. Angelotti¹, C. Florian¹, A. Santarelli¹

¹ DEI, University of Bologna, Bologna, Italy

Outline

- Introduction
- Feature-based model reduction
- Beam-Dependent DPD coefficients prediction
- Experimental setup
- Experimental results
- Conclusions

Issues in Beamsteering Array

- Active phased array behavior depend on beam angle:
 - Over-the-Air antenna coupling inducing PA load modulation
 - Different response of PAs depending on beam angle
- Digital predistortion (DPD) should encompass
 - Different beam orientations
 - Different input power levels
- Need a strategy for DPD in OTA transmitters

Problem Statement

Predict DPD coefficients while operating conditions change:

- Input signal x power level (ρ)
- Beam angle θ

Main Challenge: Coefficients Overfitting

DPD coefficients c are chosen to minimize fitting error:

- High number of coefficients (> 100)
- Local minimization → overfitting

Main challenges;

- Unpredictable changes due to overfitting
- Inefficient prediction: every coefficient relationship with operating conditions must be modelled

PAPR (dB)

PAPR (dB)

Angle (deg.)

Angle (deg.)

Feature-Based Model Reduction

DPD coefficients number is too high to be efficiently predicted among different operating conditions:

Feature-Based model reduction:

- Machine learning derived technique
- How to identify transformation matrix A?

DUT

Reduced-Model Interpolation

Feature reduction allows prediction:

$$y = X_{c(\theta,\rho)} \simeq XA_{\omega(\theta,\rho)}$$

- 2 interpolation methods tested:
 - Polynomial (Cubic)
 - Cubic spline

Beam-Dependent Digital Predistortion (BD-DPD)

Offline pre-training procedure:

- 1. Extract DPD coefficients from the pre-training set
- 2. Calculate transformation matrix A using QR-SVD features reduction
- 3. Obtain reduced features ω from the pre-training set
- 4. Extract interpolated model $\omega(\theta, \rho)$ to obtain values outside the pre-training set

Real-time DPD beam adapter operation:

• Predict $\omega(\theta, \rho)$ using interpolated model

DUT

- Obtain predistorted signal $y = XA\omega(\theta, \rho)$
- Open-loop: no feedback in real-time operation

Over-the-Air Measurement Setup

DPD Architecture (Block Diagram)

DPD coefficients extraction:

- DPD includes the whole transmitter/receiver hardware
- Generalized Memory Polynomial (GMP) model
- GMP coefficients extracted from iterative learning control predistorted signal

beamformer + antenna array

Test Signals

- Random phase 1k-tone test signals (5G FR2):
 - Bandwidth = 100 MHz
 - LO frequency = 28 GHz
- TX/RX bandwidth = 500 MHz

Pre-Training & Validation Set

Pre-training set:

- 5 input signal power levels:
 PAPR = {7, 8, 9, 10, 11} dB
- 10 beam angles: $\theta = \{0, 5, 10, 15, 20, 25, 30, 35, 40, 45\}^{\circ}$

Validation set (to test real-time conditions):

- 5 input signal with random power levels: PAPR = {8, 10 } dB
- 5 random beam angles: $\theta = [0, 45]^{\circ}$

BD-DPD Performance Verification

- <u>Fixed DPD</u>: Unique set of coefficient identified @ 0° and PAPR = 9 dB
- EVM and ACPR PAPR dependency is not appreciably corrected

BD-DPD Performance Results (EVM)

The BD method outperforms the comparison with the fixed DPD

BD-DPD Performance Results (ACPR)

The reduced feature interpolation method has a noticeable effect on performance

Linearization Performance

Performance in a significative point $(\theta = 27^{\circ}, PAPR = 8.2 dB)$:

- No DPD: EVM = -20 dB, ACPR = -25 dB
- Fixed DPD: EVM = -37 dB, ACPR = -47 dB
- BD-DPD: EVM = -43 dB, ACPR = -54 dB

Conclusions

Achievements:

- A BD-DPD architecture exploiting feature-based model reduction for beamformer arrays has been proposed
- Globalization of the DPD model
- Low-complexity update the DPD of the array according to the beam direction and RF power level

Future Work:

 Improve pre-training set with a more efficient design of experiment (Latin Hypercube)

TMYTEK

Thank You For Your Attention

Mattia Mengozzi

DEI, University of Bologna, Bologna, Italy

mattia.mengozzi3@unibo.it

