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 Power amplifier (PA) is a non-linear (NL) dynamic system and
can be modeled as a Volterra system.

* In practice, pruned Volterra models such as generalized
memory polynomial (GMP) are commonly used.

* PA Modeling with a single Volterra model is often difficult.
* Piece-wise (PW) modeling approach is an effective alternative.

* The GMP model with NL polynomial degree P and memory
depth of K for the leading and lagging memories as GMP (P,K).

AMTT-S
IEEE MICROWAVE THEORY &
7 TECHNOLOGY SOCIETY



aniIiMmMSs

Connecting Minds. Exchanging Ideas.

Our Proposed method

Xk | ML-based
Classifier

—> Volterra,

>

Volterrag

>

Time sample-wise
Realignment

Fig 1. Block diagram of the proposed scheme.

* The input signal envelope is fitted to a Rayleigh distribution for
extracting the statistical parameters for feature construction.

A machine learning (ML) classifier partitions the input signal
into B classes and is then modeled by tailored Volterra models.

* Finally, the pre-distorted samples are re-alighed in time and

sent to real PA.

AMTT-S
IEEE MICROWAVE THEORY &
7 TECHNOLOGY SOCIETY

<Sess on>-:Paner#>



'—0

o0 IMS Feature construction for ML classifier -

Connecting Minds. Exchanging Ideas. SAN DIEGO

* ML classifier features are constructed from signal statistics and
the PA operating point.

* Following features are constructed:
> (|xk| — [i)z (i.e., square of deviation of the sample’s amplitude from mean)
> |x,.|? (i.e., sample’s energy)
»Re(x;,) (i.e., real part of the sample)
»Im(x,;) (i.e., imaginary part of the sample)

> |xk|2 — (v3 dB)z (i.e., deviation of the sample’s energy from the 3 dB PA
compression point)

* These features can be computed with meager complexity.
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Fig 2. Photograph of the measurement setup.
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o0 IMS Measurement Setup Contd.

* Device under test (DUT):
_ LAN LAN
Caio CA2630-141 pcD/
+ Operating frequency: 28 GHz USB\AWG NEUT e e—
= = Trigger Input  Ch—
* Data: 64-QAM 5G NR signal |EEass ———
(100 MHz bandwidth) CHYY I
- S ¢ = | DUT: Caio !
* PAPR information: CCDF of & 1. 2 . ica6s0da RF;,

s % 3G — i >
: Cable cz:_ Iy {Cable c1 Attenuator

PAPR with 8.9 dB at 0.1 =—$@men el

probability and 10.9 dB at Fig 3. Re-illustration of the measurement setup.
0.001 probability.
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* ML classifier features are constructed from signal statistics and
the PA operating point.

* Following features are constructed:
> (kal — ﬁ)z (i.e., square of deviation of the sample’s amplitude from mean)
> |x1|? (i.e., sample’s energy)
» Re(xy,) (ie., real part of the sample)
» Im(x;,) (i.e., imaginary part of the sample)

> |x1|* — (v3 45)7 (i.e., deviation of the sample’s energy from the 3 dB PA
compression point)

* These features can be computed with meager complexity.
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* Two ML methods namely k-nearest neighbors
(KNN) with 10 neighbors and decision tree

(DT) were considered. Sample Classes | KNN F; score | DT F; score
. Class 1 0.94 0.97
 The collected dataset has 0.775 X 10 Class 2 0.99 1
0 : Class 3 0.99 |
sar_nples and 109% of the dataset is used for S e o
training. Class 5 0.02 0.96

* The classifier models with less thar_] 5 Table 1. F1-scores over the test dataset for the two
features have shown sub-optimal ML classifier models.

performance.

« Table 1 indicates that statistical feature
selection favors less ML algorithmic
complexity  with  reliable classification
accuracies.
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Linearization Performance Analysis
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Fig 4. PA Linearization performance atr.m.s. P;,
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* The conventional single GMP and the proposed schemes require
storage of 48 and 113 coefficients, respectively.

* The proposed scheme offers 69.68% and 70.72% complexity
reduction in terms of complex multiplications and additions as
shown in the Table.

The DPD | Sample GMP Number of % of total samples, Total Total
Method | Class | (P,K) | coefficients A i.e. z::jg’j\}g Multiplications |  Additions
DPDI - (5,4) 68 100.46 x 105 | 103.91 x 10°

(2,3) 12 317 %

1
2 (3,3) 21 51.21%

DPD2 3 (3,3) 21 37.70% 31.97 x 109 30.42 x 106
4 (3,3) 21 7.38%
5 (1,1) 1 0.5%

Table 2. Complexity comparison of single GMP method with the proposed scheme.
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* Alow complex ML-aided PW modeling for DPD is proposed.

e ML classifier features are constructed to the input data’s
statistics and the selected PA operating point.

e Statistical feature extraction additionally favors less ML
algorithmic complexity with reliable classification accuracies.

* The experimental results indicate the proposed method is
promising with a good performance/complexity trade-off than
the conventional single GMP model.
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