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Introduction

• Power amplifier (PA) is a non-linear (NL) dynamic system and

can be modeled as a Volterra system.

• In practice, pruned Volterra models such as generalized

memory polynomial (GMP) are commonly used.

• PA Modeling with a single Volterra model is often difficult.

• Piece-wise (PW) modeling approach is an effective alternative.

• The GMP model with NL polynomial degree 𝑃 and memory

depth of 𝐾 for the leading and lagging memories as GMP (𝑃,𝐾).
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Our Proposed method

• The input signal envelope is fitted to a Rayleigh distribution for
extracting the statistical parameters for feature construction.

• A machine learning (ML) classifier partitions the input signal
into 𝑩 classes and is then modeled by tailored Volterra models.

• Finally, the pre-distorted samples are re-aligned in time and
sent to real PA.

Fig 1. Block diagram of the proposed scheme.
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Feature construction for ML classifier

• ML classifier features are constructed from signal statistics and
the PA operating point.

• Following features are constructed:

➢ 𝑥𝑘 − ො𝜇 2
(i.e., square of deviation of the sample’s amplitude from mean)

➢ 𝑥𝑘
2 (i.e., sample’s energy)

➢Re 𝑥𝑘 (i.e., real part of the sample)

➢Im 𝑥𝑘 (i.e., imaginary part of the sample)

➢ 𝑥𝑘
2 − 𝑣3 dB

2 (i.e., deviation of the sample’s energy from the 3 dB PA 
compression point)

• These features can be computed with meager complexity.
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Measurement Setup

Fig 2. Photograph of the measurement setup.
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Measurement Setup Contd.

• Device under test (DUT):

Caio CA2630-141

• Operating frequency: 28 GHz

• Data: 64-QAM 5G NR signal

(100 MHz bandwidth)

• PAPR information: CCDF of

PAPR with 8.9 dB at 0.1

probability and 10.9 dB at

0.001 probability.

Fig 3. Re-illustration of the measurement setup.
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Feature construction for ML classifier

• ML classifier features are constructed from signal statistics and
the PA operating point.

• Following features are constructed:

➢ 𝒙𝒌 − ෝ𝝁 𝟐
(i.e., square of deviation of the sample’s amplitude from mean)

➢ 𝒙𝒌
𝟐 (i.e., sample’s energy)

➢ 𝐑𝐞 𝒙𝒌 (i.e., real part of the sample)

➢ 𝐈𝐦 𝒙𝒌 (i.e., imaginary part of the sample)

➢ 𝒙𝒌
𝟐 − 𝒗𝟑 𝒅𝑩

𝟐 (i.e., deviation of the sample’s energy from the 3 dB PA 

compression point)

• These features can be computed with meager complexity.
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ML Classifier Model

• Two ML methods namely k-nearest neighbors

(kNN) with 𝟏𝟎 neighbors and decision tree

(DT) were considered.

• The collected dataset has 𝟎. 𝟕𝟕𝟓 × 𝟏𝟎𝟔

samples and 𝟏𝟎% of the dataset is used for

training.

• The classifier models with less than 5

features have shown sub-optimal

performance.

• Table 1 indicates that statistical feature

selection favors less ML algorithmic

complexity with reliable classification

accuracies.

Table 1. F1-scores over the test dataset for the two 

ML classifier models.
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Linearization Performance Analysis

Fig 4. PA Linearization performance at r.m.s. 𝑃𝑖𝑛 = −5.5 𝑑𝐵𝑚.
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Linearization Performance Analysis

Fig 5. PA Linearization performance at different measured r.m.s. 𝑃𝑖𝑛.
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Linearization Complexity Analysis

• The conventional single GMP and the proposed schemes require
storage of 48 and 113 coefficients, respectively.

• The proposed scheme offers 69.68% and 70.72% complexity
reduction in terms of complex multiplications and additions as
shown in the Table .

Table 2. Complexity comparison of single GMP method with the proposed scheme.
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Conclusion

• A low complex ML-aided PWmodeling for DPD is proposed.

• ML classifier features are constructed to the input data’s
statistics and the selected PA operating point.

• Statistical feature extraction additionally favors less ML
algorithmic complexity with reliable classification accuracies.

• The experimental results indicate the proposed method is
promising with a good performance/complexity trade-off than
the conventional single GMP model.
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