

Tu2A-4

Improved temperature and power dependent Convolutional NN-based PA model

José D. Domingues¹, André Prata², Jiri Stulemeijer²

¹Instituto de Telecomunicações, Portugal

²Qualcomm Technologies Netherlands B.V., the Netherlands

Introduction

Methodology for model evaluation

Applied Innovations to the architecture

Problem Statement

- Optimize state-of-the-art PA behavioral model networks
 - Pre-processing the input data
 - Changing the image layer format
- Improved performance while maintaining the same network complexity
- Parameterizable over several PA states

Model response with temperature:

Network Architecture

Introduction

Methodology for model evaluation

Proposed new image and layer architecture and evaluation

Base Line for model Evaluation

 Fast Circuit Envelope level 3 (FCE3)
 Training models extracted on ADS

- 1 model per temperature
 - •16 temperatures ->(-45C up to 85C)
 - •4IPBOs [0 2 4 6]dB

- Waveforms generated
 - •BW of 100MHz
 - •BW of 15MHz

- - 3 temperatures [0 25 85] C
- Tested
 - -45C to 85C
 - The base line for evaluation was settled at:
 - •10 filters (size 3x2 each)
 - •50 neurons
 - The image layer size is set at 5x3

Introduction

Methodology for model evaluation

Proposed new image and layer architecture and evaluation

Proposed New Image Layer

- Present sample, temperature and power placed in a central positions
 - Included in most convolution operations

 $|x(i+1)|^2$

Magnifying their presence on feature maps

ľ			
j	I(n+1)	l(n)	l(n-1)
	Q(n+1)	Q(n)	Q(n-1)
	Р	Y _T	Y_TP
i	x(i+1)	x(i)	x(i-1)

 $|x(i)|^2$

I(n+1)	l(n)
Q(n+1)	Q(n)
Р	Y _T
	<u> </u>

l(n)	I(n-1)
Q(n)	Q(n-1)
Y _T	Y_{TP}

Q(n+1)	Q(n)
Б	Y _T
x(i+1)	x(i)

Q(n)	Q(n-1)
Y _T	Y _{TP}
x(i)	x(i-1)

Р	Y _T	
x(i+1)	x(i)	
x(i+1) ^2	x(i) ^2	

Y _T	Y_{TP}
x(i)	x(i-1)
x(i) ^2	x(i-1) ^2

I(n)

Q(n)

|x(i)|

 $|x(i)|^2$

I(n-1)

Q(n-1)

|x(i-1)|

|x(i-1)|^2

I(n-2)

Q(n-2)

Р

|x(i-2)|

 $|x(i-2)|^2$

 $|x(i-1)|^2$

Proposed New Image Layer

- The new architecture consists of:
 - Temperature input as function to the mean of the output waveform according to temperature and IPBO
 - T -> Y
 - Mean(Y+IPBO)^2 used as input led to improved results

l(n+1)	I(n)	I(n-1)
Q(n+1)	Q(n)	Q(n-1)
Р	Y _T	Y _{TP}
x(i+1)	x(i)	x(i-1)
x(i+1) ²	x(i) ²	x(i-1) ²

Results

 Model performs accurately for both 100MHz and 15MHz BW.

- NMSE PTI model
 - 100 MHz -> -28.88dB
 - 15 MHz -> -33.22dB

- NMSE Proposed model
 - 100 MHz -> -40.26dB
 - 15 MHz -> -41.01dB

Results

 Proposed model follows reference AMAM/AMPM values much closer than previous model.

- NMSE is constant across different IPBOs.
 - IPBO OdB -> -40.26 dB
 - IPBO 2dB -> -41.03 dB
 - IPBO 6dB -> -40.06 dB

Introduction

Methodology for model evaluation

Proposed new image and layer architecture and evaluation

Conclusion

Pre-processing is used to enhance the PA state characteristics.

Important parameters of the data are promoted in feature maps.

Model tested and validated from -45 to 85 °C and 0 to 6 dB.

Improved model performance with same network complexity.

Thank you

