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Introduction
➢ AlGaN/GaN HEMTs are used in 

1. Modern wireless communication 

technologies

2. Radar systems 3. Low noise amplifier (LNA)

Due to its ability to provide:

➢ High gain

➢ Fast switching speed

➢ Better power handling capacity

➢ Low noise figure

• Robust design 

optimization

• Reliability based design 

optimization

• Yield optimization

Reliable electronics design 

and automation (EDA) tools

➢ More reliability issues like gate lag, drain lag, current 

collapse, and frequency dispersion will appear due to 

trapping 
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Physics Based Solver: 

Technology Computer 

Aided Design

(TCAD)

➢ Solves fundamental PDEs using FEM/FDTD

➢ Highly accurate

➢ Computationally too slow

➢ Accurate trapping/de-trapping models 

possible

➢ Simple and user friendly

➢ Analytically map terminal 

characteristic to device geometrical, 

material, and bias parameters

➢ Accurate only around calibration 

points

➢ Extremely fast

Compact Models:

ASM HEMT and 

MSVG

Various EDA Tools
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To address this

Performance of HEMTs show large deviations 

from DC to sub-Terahertz frequencies due to 

trapping effect 

tune fitting parameters to mimic 

the true characteristics

extracts the true device terminal 

characteristics in presence of 

traps

Physics 

Solvers

Compact 

Models

λ1

λN

Input 

parameters

Predicted 

device 

characteristics

Repeated physics solver simulations (very slow) 

Limitations of Compact Models

Limitations 

of Compact 

Models

Can’t capture large device parameter variations

Multiple trap locations, different trap energy levels can 

not be incorporated

Repeated subsequent calibrations (very slow)

True device 

characteristic
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Physics 

Solvers

λ1

λN

Input 

parameters

With trap effect

Without trap effect

Compact 

Models

Accurate device 

characteristic

Prelims of Proposed Methodology

Same device 

parameters

Inaccurate device 

characteristicANN

ξ1

ξN
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Physics 

Solvers

λ1

λN

With trap effect

Without trap effect

Compact 

Models

Accurate device 

characteristic

Prelims of Proposed Methodology

Accurate device 

characteristicANN

ξ1

ξN
ANN augmented 

compact model
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SM Enhanced Compact Model

( )f=ξ λ

Physics 

Solvers

λ1

λN

With trap effect

Without trap effect

Compact 

Models

Accurate device 

characteristic

Accurate device 

characteristic
ANN

ξ1

ξN

Space Mapping (SM) ANN Fine model input 

parameters
Coarse model 

input parameters

( )X λ

( )Y ξ
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Training of Space Mapping ANN

( ) ( )
2

( ) ( )

, 1

1
, argmin ( ) ( ( , , ))

K
k k

opt
k

X Y z
K =

= −
w b

w b λ w b λ

Now tuning the set of weights and bias terms (w, b) to solve

the optimization problem

(4)

Once the space mapping ANN is trained

Minimal 

computational 

overheads…!!!

AnalyticAnalytic
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Numerical Example and Discussion 

Fig. 1. Schematic of GaN HEMT with bulk and interface

traps for DC and small signal Y-parameter analysis.

Device Parameters
Range

(uniform distribution)

Nsurf (donor trap density at 

interface)
1.2×1013 cm-2 ± 10%

NBT (acceptor trap density in 

GaN bulk)
5×1017 cm-3 ± 10%

ED,trap (donor trap level) 0.4 eV ± 10%

EA,trap (acceptor trap level) 0.4 eV ± 10%

x (Al mole fraction) 0.25 ± 10%

Lg (gate length) 0.7 μm ± 10%

Lgs (gate to source length) 0.7 μm ± 10%

Lgd (gate to drain length) 2 μm ± 10%

Vgs (gate to source voltage) [-5 - 0] V 

Vds (drain to source voltage) [0 - 10] V

Frequency [0.5 - 50] GHz

Table 1. Fine model (TCAD) parameters



15 Tu2A-319-ZD108

Numerical Example and Discussion 

Device Parameters
Range 

(uniform distribution)

VOFF (cut-off voltage) -3 V ± 10%

U0 (low field mobility) 2.5 m2/V-s ± 10%

VSAT (saturation velocity) 112760 m/s ± 10%

Vsataccs (saturation velocity for access 

region)
406610 cm/s ± 10%

η0 (DIBL parameter) 2.08 ± 10%

NFACTOR (subthreshold slope factor) 4.75 ± 10%

THESAT (velocity saturation parameter) 5.93 V-2 ± 10%

Lg (gate length) 0.7 μm ± 10%

Lgs (gate to source length) 0.7 μm ± 10%

Lgd (gate to drain length) 2 μm ± 10%

Vgs (gate to source voltage) [-5 - 0] V

Vds (drain to source voltage) [0 - 10] V

Frequency [0.5 - 50] GHz

Table 2. Coarse model (ASM-HEMT) parameters

Fig. 2. Deep space mapping neural 
network augmented compact model.
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Numerical Example and Discussion 

Minimum error 

threshold

➢ Testing error decay plot

Hidden layers = 3

# neurons = 100 (each layer)

# epochs = 200

Activation function = ReLU

Optimizer = Adam

Reduction in 

training samples

Reduction in 

training samples
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Numerical Example and Discussion 

Fig. 3. Scatter plot showing the accuracy of the proposed space mapping augmented compact model w.r.t.

Conventional ANN (C - ANN) and the standard compact model (CM) (a) drain current using 1015 training

samples and (b) imaginary part of Y21 using 985 training samples at 1000 testing points.
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Numerical Example and Discussion 

Fig. 4. Validation of drain current (ID) with respect to (a) gate voltage (VG), and (b) drain voltage (VD) for TCAD, 

compact model, and proposed approach evaluated at different corner points.

Corner points for Fine Model: (Nsurf=1.08×1013, NBT= 5.5×1017, ED,trap=0.44eV, EA,trap=0.44eV, x=0.275, Lg=0.77 μm, 

Lgs=0.63 μm Lgd=1.8 μm)

Corner points for Coarse Model: (Voff=-2.7, Uo=2.25, Vsat=101484, Vsataccs=365949, η0=1.872, Nfactor=5.225, 

THESAT=6.523, Lg=0.77 μm, Lgs=0.63 μm Lgd=1.8 μm)
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Numerical Example and Discussion 

Fig. 5. Validation of small-signal admittance parameters (a) Y11, and (b) Y21 for TCAD, compact model,

and the proposed method.

Corner points for Fine Model: (Nsurf=1.08×1013, NBT= 5.5×1017, ED,trap=0.44eV, EA,trap=0.44eV, x=0.275, Lg=0.77 μm, 

Lgs=0.63 μm Lgd=1.8 μm)

Corner points for Coarse Model: (Voff=-2.7, Uo=2.25, Vsat=101484, Vsataccs=365949, η0=1.872, Nfactor=5.225, 

THESAT=6.523, Lg=0.77 μm, Lgs=0.63 μm Lgd=1.8 μm)
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Numerical Example and Discussion 

Models RMS error w.r.t. TCAD

(average calculated at 

1000 sampling point)

Standard deviation of error 

w.r.t. TCAD

(average calculated at 1000 

sampling point)

Execution time

(Time for a single device 

characteristic evaluation)

Speedup 

w.r.t. 

TCAD

ID Y-parameter ID Y-parameter

TCAD - - - - 180 sec -

Compact 

model

0.2518 0.2548 12.7 ⅹ 10-3 2.1 ⅹ 10-3 4 msec 45,000

Proposed 0.1806 0.1287 8.4 ⅹ 10-3 0.9 ⅹ 10-3 5.3 msec 33,962

Table 3. The incurred computational cost for device terminal performance
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Summary

• Complicated trapping effects (bulk and interface traps) have

been included to enhance the capabilities of existing industry

standard compact models

• All features, functionalities, and flexibility of the industry-

standard compact model are retained, and this allows perfect

backward compatibility

• Space mapping augmented compact model is faster than

Conventional ANN, and physics based TCAD model
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Space Mapping (SM)

Fine 

Model
X f(X)

Coarse 

Model
Xc

Rigorous TCAD ASM HEMT or MVSG

X Xc

Xc = J(X) such that

fc(J(X)) ≈ f(X)

fc(Xc)

Mapping
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Training of Space Mapping ANN

Consider a dataset consisting of K data points described as 

( ) ( )
1{ , ( ))}k k K

kX =λ λ

( )
2

( ) ( )

1

1
( ) ( ( , , ))

K
k k

loss

k

F X Y z
K

=

= − λ w b λ

Predicted output of the space mapping 

ANN for each data point, λ(k)

Device terminal 

characteristics such as 

current and Y-parameters 

Input parameters to 

fine model for the k-th

data point
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