

A Deep Learning Space Mapping Based Enhancement of Compact Models for Accurate Prediction of Trapping in GaN HEMTs from DC to mm-Wave Frequency

Mohd. Yusuf, Smriti Singh, Biplab Sarkar, Avirup Dasgupta, and Sourajeet Roy

Department of Electronics and Communication Engineering, Indian Institute of Technology, Roorkee, India

- > Introduction
- ➤ Limitations of Compact Models
- Premise of Proposed Methodology
- Proposed: Space Mapping (SM) based Enhancement of Compact Model
- Numerical Example and Discussion
- **≻**Summary

Introduction

➤ AlGaN/GaN HEMTs are used in

2. Radar systems

3. Low noise amplifier (LNA)

1. Modern wireless communication technologies

Due to its ability to provide:

- High gain
- Fast switching speed
- Better power handling capacity
- Low noise figure

- More reliability issues like gate lag, drain lag, current collapse, and frequency dispersion will appear due to trapping
 - Robust design optimization
 - Reliability based design optimization
 - Yield optimization

Reliable electronics design and automation (EDA) tools

Various EDA Tools

Physics Based Solver: Technology Computer Aided Design (TCAD)

- > Highly accurate
- Computationally too slow
- Accurate trapping/de-trapping models possible

- > Simple and user friendly
- Analytically map terminal characteristic to device geometrical, material, and bias parameters
- Accurate only around calibration points
- > Extremely fast

- Introduction
- Limitations of Compact Models
- Premise of Proposed Methodology
- Proposed: Space Mapping (SM) based Enhancement of Compact Model
- Numerical Example and Discussion
- Summary

Limitations of Compact Models

Multiple trap locations, different trap energy levels can not be incorporated

Can't capture large device parameter variations

Performance of HEMTs show large deviations from DC to sub-Terahertz frequencies due to trapping effect

To address this

Physics Solvers True device characteristic

Compact Models

→ Predicted→ devicecharacteristics

extracts the true device terminal characteristics in presence of traps

tune fitting parameters to mimic the true characteristics

Repeated physics solver simulations (very slow)

Repeated subsequent calibrations (very slow)

- Introduction
- Limitations of Compact Models
- Premise of Proposed Methodology
- Proposed: Space Mapping (SM) based Enhancement of Compact Model
- Numerical Example and Discussion
- Summary

Prelims of Proposed Methodology

Prelims of Proposed Methodology

- Introduction
- Limitations of Compact Models
- Premise of Proposed Methodology
- Proposed: Space Mapping (SM) based Enhancement of Compact Model
- Numerical Example and Discussion
- Summary

SM Enhanced Compact Model

Training of Space Mapping ANN

Now tuning the set of weights and bias terms (w, b) to solve the optimization problem

$$(\mathbf{w}, \mathbf{b})_{opt} = \underset{\mathbf{w}, \mathbf{b} \in \Re}{\min} \frac{1}{K} \sum_{k=1}^{K} (X(\boldsymbol{\lambda}^{(k)}) - Y(z(\mathbf{w}, \mathbf{b}, \boldsymbol{\lambda}^{(k)})))^{2}$$
 (4)

Once the space mapping ANN is trained

Minimal computational overheads...!!!

- Introduction
- Limitations of Compact Models
- Premise of Proposed Methodology
- Proposed: Space Mapping (SM) based Enhancement of Compact Model
- Numerical Example and Discussion
- Summary

Table 1. Fine model (TCAD) parameters

Fig. 1. Schematic of GaN HEMT with bulk and interface traps for DC and small signal Y-parameter analysis.

Device Parameters	Range (uniform distribution)
N _{surf} (donor trap density at interface)	1.2×10 ¹³ cm ⁻² ± 10%
N _{BT} (acceptor trap density in GaN bulk)	5×10 ¹⁷ cm ⁻³ ± 10%
E _{D.trap} (donor trap level)	$0.4 \text{ eV} \pm 10\%$
E _{A,trap} (acceptor trap level)	$0.4 \text{ eV} \pm 10\%$
x (Al mole fraction)	0.25 ± 10%
L _g (gate length)	$0.7 \mu m \pm 10\%$
L _{gs} (gate to source length)	0.7 µm ± 10%
L _{gd} (gate to drain length)	2 μm ± 10%
V _{gs} (gate to source voltage)	[-5 - 0] V
V _{ds} (drain to source voltage)	[0 - 10] V
Frequency	[0.5 - 50] GHz

Table 2. Coarse model (ASM-HEMT) parameters

Device Parameters	Range (uniform distribution)	
V _{OFF} (cut-off voltage)	-3 V ± 10%	
U _o (low field mobility)	$2.5 \text{ m}^2/\text{V-s} \pm 10\%$	
V _{SAT} (saturation velocity)	112760 m/s ± 10%	
V _{sataccs} (saturation velocity for access region)	406610 cm/s ± 10%	
η _o (DIBL parameter)	2.08 ± 10%	
N _{FACTOR} (subthreshold slope factor)	4.75 ± 10%	
THESAT (velocity saturation parameter)	5.93 V ⁻² ± 10%	
L _g (gate length)	$0.7 \mu m \pm 10\%$	
L _{gs} (gate to source length)	$0.7 \mu m \pm 10\%$	
L _{gd} (gate to drain length)	2 µm ± 10%	
V _{gs} (gate to source voltage)	[-5 - 0] V	
V _{ds} (drain to source voltage)	[0 - 10] V	
Frequency	[0.5 - 50] GHz	

Fig. 2. Deep space mapping neural network augmented compact model.

Testing error decay plot

Hidden layers = 3 # neurons = 100 (each layer) # epochs = 200 Activation function = ReLU Optimizer = Adam

Fig. 3. Scatter plot showing the accuracy of the proposed space mapping augmented compact model w.r.t. Conventional ANN (C - ANN) and the standard compact model (CM) (a) drain current using 1015 training samples and (b) imaginary part of Y_{21} using 985 training samples at 1000 testing points.

Fig. 4. Validation of drain current (I_D) with respect to (a) gate voltage (V_G), and (b) drain voltage (V_D) for TCAD, compact model, and proposed approach evaluated at different corner points.

Corner points for Fine Model: (N_{surf} =1.08×10¹³, N_{BT} = 5.5×10¹⁷, $E_{D,trap}$ =0.44eV, $E_{A,trap}$ =0.44eV, x=0.275, Lg=0.77 µm, Lgs=0.63 µm Lgd=1.8 µm)

Corner points for Coarse Model: (Voff=-2.7, Uo=2.25, Vsat=101484, Vsataccs=365949, η 0=1.872, Nfactor=5.225, THESAT=6.523, Lg=0.77 μ m, Lgs=0.63 μ m Lgd=1.8 μ m)

10

Fig. 5. Validation of small-signal admittance parameters (a) Y_{11} , and (b) Y_{21} for TCAD, compact model, and the proposed method.

Corner points for Fine Model: (N_{surf} =1.08×10¹³, N_{BT} =5.5×10¹⁷, $E_{D,trap}$ =0.44eV, $E_{A,trap}$ =0.44eV, x=0.275, Lg=0.77 µm, Lgs=0.63 µm Lgd=1.8 µm)

Corner points for Coarse Model: (Voff=-2.7, Uo=2.25, Vsat=101484, Vsataccs=365949, η 0=1.872, Nfactor=5.225, THESAT=6.523, Lg=0.77 μ m, Lgs=0.63 μ m Lgd=1.8 μ m)

Table 3. The incurred computational cost for device terminal performance

Models	RMS error w.r.t. TCAD (average calculated at 1000 sampling point)		Standard deviation of error w.r.t. TCAD (average calculated at 1000 sampling point)		Execution time (Time for a single device characteristic evaluation)	Speedup w.r.t. TCAD
	l _D	Y-parameter	l _D	Y-parameter		
TCAD	-	-	-	-	180 sec	-
Compact model	0.2518	0.2548	12.7 x 10 ⁻³	2.1 x 10 ⁻³	4 msec	45,000
Proposed	0.1806	0.1287	8.4 x 10 ⁻³	0.9 x 10 ⁻³	5.3 msec	33,962

- Introduction
- Limitations of Compact Models
- Premise of Proposed Methodology
- Proposed: Space Mapping (SM) based Enhancement of Compact Model
- Numerical Example and Discussion
- Summary

Summary

- Complicated trapping effects (bulk and interface traps) have been included to enhance the capabilities of existing industry standard compact models
- All features, functionalities, and flexibility of the industrystandard compact model are retained, and this allows perfect backward compatibility
- Space mapping augmented compact model is faster than Conventional ANN, and physics based TCAD model

Acknowledgement

Thank You

Space Mapping (SM)

Training of Space Mapping ANN

Consider a dataset consisting of K data points described as

Input parameters to fine model for the *k*-th data point

 $\{\lambda^{(k)}, X(\lambda^{(k)})\}_{k=1}^K$

Device terminal characteristics such as current and Y-parameters

$$F_{loss} = \frac{1}{K} \sum_{k=1}^{K} \left(X(\boldsymbol{\lambda}^{(k)}) - Y(\boldsymbol{z}(\mathbf{w}, \mathbf{b}, \boldsymbol{\lambda}^{(k)})) \right)^{2}$$

Predicted output of the space mapping ANN for each data point, $\lambda^{(k)}$

