

TU2C-2

Embedded Near-Field Probing Antenna for Enhancing the Performance of 37-41 GHz Linear and Dual -Polarized Phased Antenna Arrays

Huixin Jin, Ahmed Ben Ayed, Ziran He, Bernard Tung, and Slim Boumaiza

Emerging Radio Systems Group (EmRG) University of Waterloo, Waterloo ON, Canada

Outline

- Motivation
- Recent Advances in RF Beamforming Array Calibration
- Design Details and Simulation Results
- Experimental Validation
- Conclusions
- Acknowledgement

Motivation

- Beamforming array calibration is a critical step before deploying array beamforming to correct for the phase and gain errors in phased arrays.
- In-field array calibration is more desirable because far-field calibration methods are not always feasible in practice.

 Digital pre-distortion (DPD) techniques are needed for enhancing the overall system performance.

Literature Review

Embedded coupled line at sub-6 GHz [1]

Embedded edge NF probes at 28 GHz [3]

Embedded coupled line at 28 GHz [2]

Embedded NF probes at 28 GHz [4]

Design Details - Design Objectives

PCB stack-up:

- Accommodate flip-chip assembly of the beamforming chips
- Provide sufficient layers to support functionalities such as antenna structures, RF transitions and shielding, power delivery, and digital control signals.
- NF probing antenna and main antenna array integration:
 - The coupling magnitude/phase between each NF probing antenna and its adjacent antenna elements should be relatively constant over the design frequency.
 - The addition of the NF probing antenna structure to the main antenna array should not negatively affect the array's beamforming performance.
- Array size: The design should be scalable.
- Mechanical considerations: Able to support digital signal interfacing, power delivery, thermal management, and mechanical housing.

Design Details - Block diagrams

 Conceptual block diagrams of RF beamforming arrays with proposed embedded NF probing antennas.

A 4x4 linear-polarized RF beamforming arrays A 4x4 dual-polarized RF beamforming arrays

Design Details – NF probing antenna structure

Design Details – NF probing antenna highlights

Symmetry:

 The proposed symmetrical NF probing antenna provides flat coupling magnitude and constant group delay between each NF probing antenna and its nearest four radiating antenna elements.

- Optimized size to cope with the constrained spacing between the antenna elements ($\lambda/2 = 3.9$ mm at 38.5 GHz).

Capable for linear and dual -polarized phased arrays

Simulation Results – NF probing antenna performance

NF probing antennas embedded in 4×4 linear-polarized phased array

NF probing antenna embedded in 2×2 dual-polarized phased array

Simulation Results –

NF probing antenna in 4x4 linear-pol array

- Simulation with 800 MHz, 256 QAM OFDM signal at 38.5 GHz.
- The low EVM and NMSE values indicate flat coupling and constant group delay between the NFP and the adjacent antenna elements.

Experimental Validation – Fabricated PCBs

4×4 linear-polarized active array 65mm*50mm

2×2 dual-polarized passive array 51mm*42mm

Experimental Validation – In-lab setup (CW measurements)

Experimental Validation – Radiation patterns

- Measured radiation patterns versus different steering angles at 38.5 GHz.
- Measured boresight gain of 16.5 dBm.

4x4 linear-polarized active array with four proposed NF probing antennas

4x4 linear-polarized active array without NF probing antennas (as reference)

Experimental Validation – NF probing antenna performance

36 37 38 39 40 41
Frequency (GHz)

NF probing antennas embedded in 4×4
linear-polarized phased array

NF probing antenna embedded in 2×2 dual-polarized phased array

Experimental Validation –

In-lab setup (modulated signal measurements)

Experimental Validation – DPD training on a 4x4 active phased array

- Modulated signal:
 - 400 MHz, 256 QAM OFDM signal
- Center frequency: 37.5 GHz
- (a) prior to DPD
- (b) after DPD trained at the FF in the main beam direction
- (c) after DPD trained using NF probing antennas

Conclusions

- The simulation/experimental validation inferred the proposed NF probing antenna is
 - able to meet the constrained spacing at 38.5 GHz and scalable for any largescale linear and dual -polarized phased arrays.
 - effective in providing a feedback path for array calibration and DPD training.
- The experimental validation of the 4x4 active phased array with four embedded NF probing antennas
 - beam steerability from −50 deg to 50 deg on the H-plane.
 - negligible impact of the NF probing antennas on the phased array's radiation pattern.
 - successful DPD training; enabled the EIRP to be increased from 32 dBm to 34.1 dBm while maintaining an EVM below 3.5%.

Acknowledgement

- The authors would like to acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), as well as the Ontario research funds-Research Excellence (ORF-RE).
- The authors would also like to express their gratitude to
 - Keysight Technologies Inc. for loaning the equipment used in the test and measurement setup.
 - Canadian Microelectronics Corporation (CMC) for providing EDA tools for designs and simulations.
 - Gorilla Circuits for array fabrication.
 - NXP Semiconductors for supplying the integrated circuits used in the fabricated active arrays.

References

- [1] S. -C. Chae, H. -W. Jo, J. -I. Oh, G. Kim and J. -W. Yu, "Coupler Integrated Microstrip Patch Linear Phased Array for Self-Calibration," in IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 9, pp. 1615-1619, Sept. 2020, doi: 10.1109/LAWP.2020.3011862.
- [2] N. Tervo et al., "Digital Predistortion of Millimeter-Wave Phased Array Transmitter With Over-the-air Calibrated Simplified Conductive Feedback Architecture," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 543-546, doi: 10.1109/IMS30576.2020.9224083.
- [3] A. B. Ayed, G. Scarlato, P. Mitran and S. Boumaiza, "On the Effectiveness of Near-Field Feedback for Digital Pre-Distortion of Millimeter-Wave RF Beamforming Arrays," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 547-550, doi: 10.1109/IMS30576.2020.9223791.
- [4] A. Ben Ayed, Y. Cao, P. Mitran and S. Boumaiza, "Digital Predistortion of Millimeter-Wave Arrays Using Near-Field Based Transmitter Observation Receivers," in IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 7, pp. 3713-3723, July 2022, doi: 10.1109/TMTT.2022.3174857.

