

Tu02D-4

A 2.5-to-18GHz Reconfigurable LNA With 1.38-to-1.97dB NF Using Switchable Diplexer and Low-Noise Oriented Input

Z. Wang¹, M. Chen¹, X. Li¹, X. Tang², and Y. Wang¹ ¹University of Electronic Science and Technology of China, Chengdu, China ²New Mexico State University, Las Cruces, USA

- Introduction
- **■** Circuit Design
- Broadband Low-Noise Oriented Input Stage
- Coupled-Line-Based Reconfigurable Diplexer
- **■** Measurement & Comparison
- **■** Conclusion

- **■** Introduction
- **■** Circuit Design
- Broadband Low-Noise Oriented Input Stage
- Coupled-Line-Based Reconfigurable Diplexer
- Measurement & Comparison
- Conclusion

- Applications
- Multiband/WidebandTransceivers
- Radar Sensing
- Instrumentation
- Requirements on LNA
- Impedance Matching
- Adequate Gain
- Flat In-band Frequency Response
- Low Noise Figure (NF)

Classical Types

Distribute Structure

- Wide Bandwidth
- Relatively High NF
- Low Unity Gain

Reconfigurable Structure

[X. Yu et al., TMTT'2013]

- Multi-band & Multi-mode
- Noise Contributions of Switches

Diplexer-based Amplifier

Power Amplifier (PA), [K. Choi et al., IMS'2018]

- © Dual-band, Dual-mode (6–10.5, 10.5–18 GHz)
- Discontinuities in Gain and Frequency Response
- Gain Variation = 10 dB

Diplexer-based Amplifier

LNA, [C. Xie et al., Access'2020]

- Dual-band, Dual-mode (8–10, 12–20 GHz)
- Low Noise Figure
- Discontinuities in Gain and Frequency Response
- Gain Variation ≈ 8 dB
- **Concerns about Oscillation**

The Proposed LNA

- Introduction
- **■** Circuit Design
- Broadband Low-Noise Oriented Input Stage
- Coupled-Line-Based Reconfigurable Diplexer
- Measurement & Comparison
- Conclusion

■ The Cascode LNA Unit Cell

■ The Cascode LNA Unit Cell

Simulation Results

■ The Broadband Low-noise Input Stage

- Two Cascode Stages to Boost Gain
- Not for Gain Balance
- For Gain Improvement Without Sacrificing Noise
- Similar Zeros and Poles

- Introduction
- **■** Circuit Design
- Broadband Low-Noise Oriented Input Stage
- Coupled-Line-Based Reconfigurable Diplexer
- Measurement & Comparison
- Conclusion

■ Conventional Couple-Line-Based Diplexer

LNA, [C. Xie et al., Access'2020]

- \bullet A Capacitor C_T at the Through Port;
- For Low Freq. Signal, $C_T \rightarrow$ Open Circuit
- For High Freq. Signal, $C_T \rightarrow$ Short Circuit
 - Frequency Division
 - Large Amplitude Variation at Overlapping Freq. Band

■ The Proposed Reconfigurable Diplexer

W: 10 μm S: 4 μm L: 700 μm C₁: 0.8 pF

C_L: 0.2 pF

C_H: 1.2 pF

- Two Switched Capacitors at the Through Port
- Larger Capacitor for High-Band Mode,
 Smaller Capacitor for Low-Band Mode
- Enable Band Overlap
- Minimize Gain Variation within the Two Bands

■ The Proposed Reconfigurable Diplexer

Low-Band Mode

■ The Proposed Reconfigurable Diplexer

■ The Proposed Reconfigurable LNA

- Introduction
- **■** Circuit Design
- Broadband Low-Noise Oriented Input Stage
- Coupled-Line-Based Reconfigurable Diplexer
- **■** Measurement & Comparison
- **■** Conclusion

Measurement

- Die micrograph
 - Area with pads: 3 mm²
 - 0.15 μ m GaAs pHEMT
 - $f_t = 115 GHz$

Measurement

■ Low-Band Mode

- Frequency: 2.5–8 GHz
- Gain (S21): 20.3-22.1 dB
- Input RL (S11): >10 dB
- Output RL (S22): >10 dB

High-Band Mode

- Frequency: 12-18 GHz
- Gain (S21): 20.2-22.7 dB
- Input RL (S11): >9.1 dB
- Output RL (S22): >10 dB

Measurement

- Low-Band Mode
 - NF: 1.38 1.53 dB
 - OP1dB: 2-7.4 dB

- High-Band Mode
 - NF: 1.64 1.97 dB
 - OP1dB: 3.5-7.2 dB

Comparison

Table 1. Comparisons to the state-of-arts

	Freq. (GHz)	Bandwidth (GHz)	Overlapping Bandwidth (GHz)	Gain (dB)	Gain Variation (dB)	NF (dB)	RL (dB)	P _{DC} (mW)	Area (mm²)	Tech.
This work	2.5–8	5.5	2	20.3–22.1	<2.5	1.38–1.53	>9*,>10	128.4	3	0.15μm GaAs
	6–18	12		20.2–22.7	1.64-1.97	, 10	237.2	J	pHEMT	
[6]	8–10	2	0	25–25.2	<7.9	1.28-1.41	>10	190	3.6	0.15μm GaAs
رما	12–20	8	Ü	20.1–28	٦١.۶	1.23–1.51	× 10	227.5	5.0	рНЕМТ
[2]	0.1–20	19.9	-	27.4–29.8	<2.4	3.1–5.8	>10	505	1.53	0.15μm GaAs pHEMT
[7]	0.1–23	22.9	-	25.9–28.9	<3	2.7–4	>5**	336	1.36	0.15μm GaAs pHEMT
[8]	3.2–14.7	11.5	_	34	<3	1.3-2.5*	>5	45	2	0.15μm GaAs pHEMT

^{*}Input Return Loss, **Read value from figures

Comparison

Table 1. Comparisons to the state-of-arts

	Freq. (GHz)	Bandwidth (GHz)	Overlapping Bandwidth (GHz)		Gain Variation (dB)	NF (dB)	RL (dB)	P _{DC} (mW)	Area (mm²)	Tech.
This work	2.5–8	5.5	2	20.3–22.1	 <2.5	1.38–1.53	>9*,>10	128.4	3	0.15μm GaAs
	6–18	12		20.2-22.7		1.64-1.97		237.2		pHEMT
[6]	8–10	2	0	25–25.2	<7.9	1.28-1.41	>10	190	3.6	0.15μm GaAs
[6]	12-20	8	U	20.1–28	~1.9	1.23-1.51	×10	227.5	3.0	pHEMT
[2]	0.1–20	19.9	_	27.4–29.8	<2.4	3.1–5.8	>10	505	1.53	0.15μm GaAs pHEMT
[7]	0.1–23	22.9	_	25.9–28.9	<3	2.7–4	>5**	336	1.36	0.15μm GaAs pHEMT
[8]	3.2–14.7	11.5	_	34	<3	1.3-2.5*	>5	45	2	0.15μm GaAs pHEMT

^{*}Input Return Loss, **Read value from figures

- Introduction
- **■** Circuit Design
- Broadband Low-Noise Oriented Input Stage
- Coupled-Line-Based Reconfigurable Diplexer
- Measurement & Comparison
- **■** Conclusion

Conclusion

- ☐ A reconfigurable LNA with ultra-broad and very low-noise is
 - presented and fabricated in a 0.15 μ m GaAs technology;
- ☐ Using the proposed low-noise oriented input stage and
 - switchable diplexer, the LNA solves the issues of emerging
 - diplexer-based concepts and presents attractive performance.
- ☐ The measurement results show a 2.5~18 GHz, <1.97 dB NF, and <2.5 dB Gain Variation.
- ☐ It is believed to be useful for ultra-wideband applications.

Summary

Thank You!

