

Tu02E-1

A High LO-to-RF Isolation E-band Mixer with 30 GHz Instantaneous IF Bandwidth in 90nm CMOS

Wei-Chieh Ma¹, Chau-Ching Chiong²,
Yun-Shan Wang¹, Huei Wang¹

¹Graduate Institute of Communication Engineering,
National Taiwan University, Taipei, Taiwan

²Academia Sinica Institute of Astronomy and Astrophysics
(ASIAA), Taipei, Taiwan

Outline

- Motivation
- Paper Survey
- Schematic
- Circuit Design
 - Bias and Transistor Size
 - Butterworth LPF
 - LC Resonators
- Simulation and Measurement
- Comparison to Reported Mixers
- Conclusion
- References

Motivation

- ALMA2030 Development Roadmap
 - Goals: Explore origins of planets, galaxies, and chemical complexity

- Atacama Large Millimeter/submillimeter Array (ALMA)
 - High-sensitivity
 - High-resolution

Motivation

- ALMA receivers specification
 - Low-noise performance
 - Increase sensitivity of observation
 - Instantaneous bandwidth
 - Improve efficiency of observation

 A 24-48 GHz Cascode HEMT Mixer with DC to 15 GHz IF Bandwidth for Astronomy Radio Telescope

- Cold-biased mixing stage
- Common-source RF stage
- Poor LO-to-RF isolation
- IF frequency: DC-15 GHz

[1] Z.-M. Tsai, J.-C. Kao, K.-Y. Lin and H. Wang, "A 24–48 GHz cascode HEMT mixer with DC to 15 GHz IF bandwidth for astronomy radio telescope," 2009 European Microwave Integrated Circuits Conference (EuMIC), 2009, pp. 5-8.

A W-band High LO-to-RF Isolation Triple Cascode Mixer With

Wide IF Bandwidth

- Cold-biased mixing stage
- Cascode RF stage
- Degraded IP1dB
- IF Frequency: DC-24 GHz

[2] J. -C. Kao, K. -Y. Lin, C. -C. Chiong, C. -Y. Peng and H. Wang, "A W-band High LO-to-RF Isolation Triple Cascode Mixer With Wide IF Bandwidth," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 7, pp. 1506-1514.

 A High LO-to-RF Isolation 34-53 GHz Cascode Mixer for ALMA Observatory Applications

- Cold-biased mixing transistor
- Common-source RF stage
- LC resonators
- IF frequency: 3-13 GHz

[3] C. -N. Chen, Y. -H. Lin, Y. -C. Chen, C. -C. Chiong and H. Wang, "A High LO-to-RF Isolation 34–53 GHz Cascode Mixer for ALMA Observatory Applications," 2018 IEEE MTT-S International Microwave Symposium (IMS), 2018, pp. 686-689.

- [1] Poor LO-to-RF isolation
- [2] Sacrifice IP1dB for LO-to-RF isolation
- [3] Chosen structure

Ref.	Mixing Stage	RF Stage	Embedding	IF Bandwidth	LO-to-RF Isolation	IP1dB
[1]	Cold-biased	Common-source	N/A			\odot
[2]	Cold-biased	Cascode	N/A	\odot		
[3]	Cold-biased	Common-source	LC resonators			

- 90nm CMOS process (Compared to GaAs pHEMT)
 - Lower parasitic capacitance
 - More suitable for wide IF bandwidth design
 - Multi-layer flexibility
 - Compact layout
 - Lower cost

Schematic

- Cold-Biasing Technique
 - Extend IF bandwidth

- Butterworth LPF
 - Improve LO-to-IF isolation
 - Improve RF-to-IF isolation

- LC Resonators
 - Improve LO-to-RF isolation RF [↑]

Circuit Design (Bias)

- RF Stage (V_{GS} =0.6 V)
 - Trade-Off between g_m and P_{DC}
 - $V_{GS} \nearrow : g_m \nearrow , P_{DC} \nearrow$
- Mixing Stage (V_{GS}=0.35 V)
 - Maximize second-order transconductance
 - Good conversion gain
 - Minimize third-order transconductance
 - Good linearity

Circuit Design (Bias)

- Conventional Cascode
 - Common gate mixing stage
 - Output impedance
 - Higher
 - More frequency-dependent
- Modified Cascode
 - Cold-biased mixing stage (V_{DS}=0)
 - Output impedance
 - Lower (closer to 50 0hm)
 - Less frequency-dependent

Circuit Design (Transistor Size)

- RF Stage (2 µm*16 fingers)
 - Trade-off between g_m and P_{DC}
 - Size ≯: g_m ≯, P_{DC} ≯
- Mixing Stage (2 µm*16 fingers)
 - Trade-off between CG and bandwidth
 - Size ↗ : CG ↘, bandwidth ↗
 - Output impedance close to 50 Ohm

- LO-to-IF Leakage
 - Saturate IF amplifier

Butterworth LPF

- Pass IF signal (slightly matching for gain flatness)
- Block LO and RF signal

- 5th order shunt-first LPF
 - Passband (DC-32 GHz)
 - Insertion loss lower than 1 dB
 - Stopband (60-92 GHz)
 - Insertion loss higher than 20 dB

Improvement in LO-to-IF isolation and RF-to-IF isolation

- LO-to-RF Leakage
 - Interfere RF circuit
 - Self-Mixing causing DC-offset

- LC resonators
 - Parallelled LC pairs resonating at LO frequency (60 GHz)
 - Parasitic capacitor included (C_{gs} of mixing stage and C_{dg} of RF stage)

Small signal equivalent circuit

- Admittances between ports of LO-to-RF leakage path
 - Both need to be minimized!

$$Y_{12} = \frac{i_1}{v_2} \Big|_{\substack{v_1 = 0 \\ v_3 = 0}} = -j2\pi f \left(C_{R1} + C_{gs1} - \frac{1}{4\pi^2 f^2 L_{R1}} \right)$$

$$Y_{12} = \frac{i_1}{v_2}|_{v_1=0} = -j2\pi f \left(C_{R2} + C_{dg2} - \frac{1}{4\pi^2 f^2 L_{R2}} \right)$$

- Inductance and Capacitance
 - Minimize Y₁₂ at 60 GHz
 - LC Resonance frequency: 60 GHz

- Layout consideration
 - Spiral inductor
 - Edge-coupled MOM capacitor
 - Reduce impact of process variation
 - DC block
 - Large capacitor with negligible reactance

- Without LC Resonator
 - 24 dB LO-to-RF Isolation
 - Signal interference and DC offset

- With 2 LC Resonators
 - 34 dB LO-to-RF Isolation
 - Meeting system requirement

- Conversion Gain
 - -9 to -12 dB

- 3 dB IF Frequency
 - 2 to 32 GHz

(With 8-dBm 60-GHz LO signal)

- LO-to-RF Isolation
 - $-40 \, \mathrm{dB}$
- LO-to-IF Isolation
 - 31 dB(Single LO frequency: 60 GHz)

- RF-to-IF Isolation
 - $> 38 \, dB$

(RF frequency: 62-94 GHz)

- IP1dB at 90 GHz
 - 2 dBm

(With 8-dBm 60-GHz LO signal)

- IP1dB in Full E-band
 - -2 to 4 dBm

(With 8-dBm 60-GHz LO signal)

Comparison to reported mixers

Ref.	Process	Topology	RF freq (GHz)	IF freq (GHz)	CG* (dB)	IP _{1dB} (dBm)	LO-to-RF ISO# (dB)	P _{dc} (mW)	LO power (dBm)	Area (mm²)
[1]	0.15-μm GaAs pHEMT	Modified cascode	27-47	DC-15	0	N/A	N/A	N/A	4	1.5
[2]	0.15-μm GaAs pHEMT	Modified triple cascode	75-120	DC-24	-1017	N/A	41.5	24	7	1
[3]	0.1-μm GaAs pHEMT	Modified cascode	34-53	3-13	-24	-24	37	36	0	2.3
[4]	0.25-μm GaAs pHEMT	Star mixer	17-34	0.1-13	-6.615.2	N/A	22.6	0	14	0.8
[5]	0.15-μm GaAs pHEMT	Ring mixer	40-50	DC-10	-9.211.9	N/A	20	0	15	1.2
[6]	0.15-μm GaAs pHEMT	Subharmonically pumped diode	75-105	DC-21	-4.7	N/A	15	0	11	2
[7]	GaAs	Double balanced	18-50	DC-21	-8.7	9	39	0	12-22	16
[8]	90nm CMOS	Fundamental drain/gate pumped	30-90	DC-16	-7.213.7	2	30.2	0.6	4.2	0.4
This work	90nm CMOS	Modified cascode	62-92	2-32	-912	-2-4	40.8	8.1	8	0.4

^{*}Conversion gain, #LO-to-RF isolation

Conclusion

- Cold-Biasing Technique
 - Extend Instantaneous IF Bandwidth
 - 2-32 GHz 3-dB IF frequency
- LC Resonators
 - Improve LO-to-RF Isolation
 - 40 dB LO-to-RF Isolation
- Acceleration in Astronomical Observation
 - The observation is two to three times faster than before

References

- [1] Z.-M. Tsai, J.-C. Kao, K.-Y. Lin and H. Wang, "A 24–48 GHz cascode HEMT mixer with DC to 15 GHz IF bandwidth for astronomy radio telescope," 2009 European Microwave Integrated Circuits Conference (EuMIC), 2009, pp. 5-8.
- [2] J. -C. Kao, K. -Y. Lin, C. -C. Chiong, C. -Y. Peng and H. Wang, "A W-band High LO-to-RF Isolation Triple Cascode Mixer With Wide IF Bandwidth," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 7, pp. 1506-1514.
- [3] C. -N. Chen, Y. -H. Lin, Y. -C. Chen, C. -C. Chiong and H. Wang, "A High LO-to-RF Isolation 34–53 GHz Cascode Mixer for ALMA Observatory Applications," 2018 IEEE MTT-S International Microwave Symposium (IMS), 2018, pp. 686-689.
- [4] Y.-A. Lai, C.-N. Chen, S.-H. Huang, and Y.-H. Huang, "Compact Double-balanced Star Mixers with Novel Dual 180° Hybrids," in Proc. IEEE 11th Int. Conf. Solid-State Integr. Circuit Technol., Oct. 2012, pp.1-4.
- [5] Z. Chen, X. Jiang, W. Homg, and J. Chen, "A Q-band doubly balanced mixer in 0.15um GaAs PHEMT technology," in IEEE Int. Wireless Symp., Mar. 2014, pp. 1-4.
- [6] Y.-J. Hwang, H. Wang, and T.-H. Chu, "A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer," IEEE Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 313–315.
- [7] Markimicrowave, "GaAs MMIC Double Balanced Mixer," MM1-1850HSM datasheet, May. 2019 [Revised July. 2019].
- [8] Y.-C. Wu, C. -C. Chiong and H. Wang, "A novel 30–90 GHz singly balanced mixer with broadband LO/IF," 2016 IEEE MTT-S International Microwave Symposium (IMS), 2016, pp. 1-4.

Thank you for listening!

