

Tu2E-2

A Compact Multi-Channel CMOS Frequency Multiplier for Millimeterwave and Terahertz Signal Generation

Dong-Woo Kang

Electronics and Telecommunications Research Institute (ETRI), South Korea

Outline

- Introduction
- Motivation
- Proposed Multi-Channel Frequency Multiplier
- Sub Building Blocks
- Measurement Results
- Summary

Introduction

- Millimeter-wave to Terahertz Frequency
 - 5G, B5G, and 6G
 - ISM band (60 GHz, 120GHz, 240 GHz)
 - Automotive Radar (77 GHz, 120 GHz, 140 GHz)

Frequency (GHz)	Bandwidth (GHz)		
116~123	7		
174.8 ~ 182	7.2		
185 ~ 190	5		
244 ~ 246	2		
Total	21.2		

New ISM spectrum by FCC 15.238

Motivation

Commercial Active Multiplier Chains

Single input

Single Output for each waveguide band

VDI Part #	Band (GHz)	Output Flange	RF Frequency Multiplication Factor	Typical Output Power (dBm)	Minimum Output Power (dBm)
WR1.0AMC-I	750 - 1,100	WM-250 (WR1.0) UG-387U-M	81	-16	-26
WR1.5AMC-I	500 - 750	WM-380 (WR1.5) UG-387/U-M	54	-7	-13
WR2.0AMC-I	400 - 550	WM-470 (WR1.9) UG-387U-M	36	1	-5
WR2.2AMC-I	330 - 500	WM-570 (WR2.2) UG-387/U-M	36	0	-6
WR2.8AMC-I	260 - 400	WM-710 (WR2.8) UG-387/U-M	27	5	-1
WR3.0AMC-I	250 - 375	WM-710 (WR2.8) UG-387/U-M	27	5	0
WR3.4AMC-I	220 - 330	WR3.4 UG-387U-M	18	6	3
WR4.3AMC-I	170 - 260	WR4.3 UG-387/U-M	18	8	3
WR4.5AMC-I	160 - 250	WR4.3 UG-387U-M	18	10	5
WR5.1AMC-I	140 - 220	WR5.1 UG-387/U-M	12	10	6
WR6.5AMC-I	110 - 170	WR6.5 UG-387U-M	12	18	15
WR8.0AMC-I	90 - 140	WR8.0 UG-387/U-M	12	19	13
WR9.0AMC-I	82 - 125	WR9.0 UG-387U-M	9	20	17
WR10AMC-I	75 - 110	WR10 UG-387/U-M	6	20	17
WR12AMC-I	60 - 90	WR12 UG-387U-M	6	20	17

VDI AMC-I Standard Product List

WR15 UG-387/U-M

Proposed Topology

- Proposed Multi-Channel Active Frequency Multiplier
 - Each Doubler operate balanced topology
 - Need the wideband balun for each band
 - Fractional bandwidth > 20% (mostly depend on the driving amp.)

Proposed Topology - Cont.

- Operating Modes (on/off control of the each drive amp.)
 - Three Independent Source Generations
 - Three Simultaneous Source Generations

Marchand Balun

- Three Different Marchand Baluns
 - Meandered Microstrip Structure
 - Phase & Amplitude: 0.8 dB/0.8° (27~33 GHz), 0.8 dB/ 0.6° (54~66 GHz). 1.1 dB/2.4° (108~132 GHz)

Marchand Balun

- 120 GHz Marchand Balun
 - Two types of test patterns
 - One of two differential outputs is terminated with 50 Ω resistor

120 GHz Doubler

- Active balanced topology
 - 60 GHz Marchand balun, 60 GHz drive amplifier, Balanced doubler core

240 GHz Doubler

- Active balanced topology
 - 120 GHz Marchand balun, 120GHz drive amplifier, Balanced doubler core

120/240 GHz Doubler TP

120 GHz doubler Test Pattern

240 GHz doubler Test Pattern

Active Divider

- 60GHz differential amplifier
 - Gain > 3 dB & Gain difference < 1 dB
 - Working as only amplitude divider

Active Divider

- 60GHz differential amplifier
 - 60GHz Output conditions (Open or 50Ω)
 - Gain & Output Matching are slightly changed

-S22_50 Ω

-S22_open

70

65

Implementation

- Size: 1.3 mm x 0.9 mm (40nm CMOS Technology)
- Power Consumption: 1.1 V / 70 mA, 1.8 V / 110 mA

Measurement Setup

[60GHz Band Measurement]

[120GHz Band Power Measurement]

[120GHz Band Spectrum Measurement]

15 <Tu2E - 2>

Measured Results

Spectrum Results

Measured Results

Power Meter Results

Measured Results

Power Meter Results

Summary

- mmW to Sub-Terahertz source generation in single CMOS chip
- Three separate frequencies from 54 GHz to 252 GHz
- Each output covers a fractional bandwidth of 14 ~ 20%
- Can extend to WR-15 (50~75GHz), WR-08 (90 ~ 140 GHz), and WR-04 (170~ 260 GHz) using wideband driving amplifier