

Tu2E-2

A 2.4-GHz MEMS-Based Oscillator with Phase Noise of -138 dBc/Hz at 100 kHz Offset and 226 dBc/Hz FoM

Shiyue Ma, Keping Wang, Menglun Zhang, and Kaixue Ma

Tianjin University, Tianjin, China

Outline

- Motivation
- Proposed MEMS-Based Oscillator
- Circuit Implementation
- Experimental Results
- Conclusion

Motivation

- RF oscillators are one of essential modules
 - Small size, low phase noise, low power
- Micro-Electro-Mechanical-System (MEMS) oscillators are attractive
 - High Q-factor(>1000)
 - ✓ Improve phase noise
 - * A longer start-up time
 - Integration potential, low cost
- Shorten start-up time helps to save power

Motivation

- G_m-boosting techniques are used to shorten start-up time and decrease power
 - Darlington cell
 - Body biasing

Body biasing scheme

Proposed MEMS-Based Oscillator

- G_m-boosting differential Colpitts
- Dynamic self-body-biasing scheme
- Benefits
 - Senses the voltage from internal circuit to bulk terminal
 - Limitation on output swing is relaxed
 - Deterioration of phase noise caused
 by large amplitude is decreased

MEMS resonator

Off-chip MEMS resonator is used for high-Q tank

<MBVD model>

Impedance response>

G_m-boosting differential Colpitts

Conventional differential Colpitts>

Small signal model of gm-boosting Colpitts>

• Assuming that, $g_{m1}=g_{m2}$, $g_{m3}=g_{m4}$

• Re_{Gm} =
$$-\frac{1}{2} \frac{w^2 C_1 C_2 g_{m1}}{g_{m1}^2 + w^2 (C_1 + C_2)^2} \left(1 + \frac{g_{m3}}{g_{m1}} (1 + \frac{C_1}{C_2})\right)$$

G_m-boosting

Darlington cell

<Small signal equivalent circuit model of Darlington cell> <Normalized transconductance of Darlington cell vary with N>

•
$$G_{m}(D) = \frac{g_{m1}(1+g_{m2}R_s)+(g_{m1}C_{gs2}+g_{m2}C_{gs1})sR_s}{1+g_{m1}R_s+(C_{gs1}+C_{gs2})sR_s}$$

- G_m(D) would be optimized by properly selecting the size of M₁ and M₂
- N is the size ratio of M_1 and M_2 . Here, N=5

Self-body-biasing

- Dynamic self-body-biasing improves the start-up safety
- Start-up time can be further shorten by adding V_b (red curve) based on the g_m -boosting Colpitts using Darlington cell (blue curve)

Chip Micrograph

- Fabricated with 180-nm CMOS
- The area of the CMOS chip is 650 μ m \times 570 μ m including pads

Measured phase noise

- P_{DC}: 0.98 mW @ 0.7 V supply
- P_{out}: -5.28 dBm at 2.4 GHz
- Phase noise: -138.23 dBc/Hz@100kHz; -156.64 dBc/Hz@1MHz

Measured phase noise

- Measured phase noise across tail current from 0.5 to 1.1 mA
- Measured phase noise performance is quite stable

Measured start-up time

- Measured using KEYSIGHT DSOS404A Digital Storage Oscilloscope
- It stabilizes within ~ 5 μs

Performance comparison

Reference	Techn.	Freq.	VDD	PN@1kHz	PN@10kHz	PN@100kH	PN@1MHz	Start-up	PDC	FoM
	(nm)	(GHz)	(V)	(dBc/Hz)	(dBc/Hz)	z (dBc/Hz)	(dBc/Hz)	time (µs)	(mW)	(dBc/Hz)
[3]CICC'11	130	2	0.6	-68*	-102*	-128	-149	N/A	0.126	224
[11]RFIC'13	130	1.925	1.2	-88.3	-116	-137.2	-146	N/A	1.6	220
[12]EuMIC'14	180	1.984	1.1	-73.23	-100.74	-124.85	-148	N/A	1.7	212
[13]ISSCC'15	65	0.75	0.7 5	-90*	-115*	-135*	-145	N/A	0.45	216**
[14]TCAS-2'19	65	2	0.6	-68.6	-96.4	-127	-141	N/A	0.35	217
[15]RFIC'21	7	2.492	8.0	-77*	-104*	-128	-140*	N/A	0.416	220
[16]TMTT'15	65	2.46- 2.5	1.2	-65*	-96*	-121	-130*	2	1.32	207**
[17]VLSI'19	65	2.4	1.5	-70*	-100*	-120	-127*	<10	> 1**	N/A
This work	180	2.4	0.7	-87.88	-112.92	-138.23	-156.64	5	0.98	226

^{*} Extracted from measurement plot

** Calculated

FoM=20 log
$$\left(\frac{f_0}{\Delta f}\right)$$
 -10 log $\left(\frac{P_{DC}}{1mW}\right)$ -L($\Box f$)

Conclusion

- A 2.4-GHz MEMS-based oscillator with g_m-boosting technique was designed
- A novel Darlington cell with a dynamic self-body-biasing scheme was proposed
- It has the features of
 - Short start-up time
 - Low phase noise
 - Excellent FoM

Thank you!

