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o2 IMS Surrogate modeling for Sl

Connecting Minds. Exchanging Ideas.

e Signal integrity is expensive:
— Solving large scale EM models
— Extremely long transient alike simulation

* Use surrogate model instead
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o0 IMS Surrogate modeling for Sl
e Signal integrity is expensive:

— Solving large scale EM models

— Extremely long transient alike simulation
* Use surrogate model instead
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B0IMS  Gaussian Process for SI modeling

 GP is a set of points which sampled from a multi-dim Gaussian
— GP:f:D» R

 The need for constrained GP: outputs are bounded by physical meanings
|
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B0IMS  Gaussian Process for SI modeling

* Review: Linear regression in Bayes’ view

%5 .
SAN DIEGO

e ~ N(0,0%)

/

y=rf@)+e
f(x)=x'0 = Z 1,0},
k=1
N .
MLE: argglax p(D|O) = argma,x]:[p (y(z)|m,9)

9 1=1
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B0IMS  Gaussian Process for SI modeling

Connecting Minds. Exchanging Ideas.

* Review: Linear regression in Bayes’ view e ~ N (0,0%)

~ p(D|o)p(0)
. / p(D]8)p(6)d6

0

<+— |nterval estimate

« Sample from the posterior for prediction

p(w*,@)=/ﬂp<y*|m*,e)p<eu>)de
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B0IMS  Gaussian Process for SI modeling

* Relationship with Gaussian Process: e ~ N (0,0%)

— Use nonlinear mapping (feature map): ¢ y = f(z)+ E/
— Posterior involves the term
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1 B T
Kernel function 1 _
for any pair of input x and x’ 0~N (01 329) <+ Place a prior on ¢/
— Mercer’s theorem: choose k
instead of ¢

) (6] D) = p(D|6)p(6)
/ p(D]8)p(6)d6

0

<+— |nterval estimate

 Sample from the posterior for prediction

P(’y*|$*ap) = /P(y*|ﬂ3*j9)10(9|77) d@ <«— A Gaussian
0
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B0IMS  Gaussian Process for SI modeling

SANEGO
* Constrained GP € ~ o?)
bounded Choose a
v y=f(x)+e bounded distribution

0~ N (03 %29) <+— Place a prioron &

<+— |ntractable

_ »(6|D) = P (PlO)P(6)
' i . [p(@16)5(6)a0

Xi
« Sample from the posterior for prediction

P (y«| @+, D) = /P(y*|ﬂ3*g.9)p(9|D) d@ <— Intractable
0
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B0IMS  Gaussian Process for SI modeling

Connecting Minds. Exchanging Ideas.

e Constrained GP:

1. Choosing a bounded likelihood: 3.0
Beta distribution 2.5 -

I'(a+ ()
I'(a) I (B)

2271 - Z)ﬁ—l E 1.5 -

p(z|a,3) = Beta(a,B) =

0.0 0.2 0.4 0.6 0.8 1.0

—— a=05,=05 —e— a=2,=2
—w— a=3,=1 -m— a=2,B=5
—— a=1,=3
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B0IMS  Gaussian Process for SI modeling

Connecting Minds. Exchanging Ideas.

e Constrained GP:

2. Approximate the posterior:

— Laplace appr. works well for unimodal
distribution only.

— Variational approach is more powerful

 Variational inference:

— Use a variational distribution g to approximate
the true distribution MAP est.

— Need to optimize some metrics: Kullback-Leibler (KL) divergence

"« Laplace est.

— Minimizing KL divergence is equivalent of maximizing evidence lower bound (ELBO)
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B0IMS  Gaussian Process for SI modeling
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* AD2D channel: ]

— Inputs: channel geometry, RX EQ ;Z:

— Outputs: eye width, eye height % e

— SGD with Adam optimizer was used to train. S0z 2

— RBF kernel, 50 training samples (uniformly sampled) e ;:zpreﬁtedoiEGH (ﬁo.'sd) 10 12
e Result: - -

— Bounded GP does not violate physical meanings 15-

— Bounded GP has lower errors, converge sooner 210

— Training time is only slightly longer (for the same QO.S_

number of epochs) b

-#4-- exact GP —— true data
-#-- bounded GP
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 GP was shown to outperform other surrogate models in certain tasks in
SPI/RF microwave: fewer samples, lower errors.

 Modified GP can be done to enforce physical constraints in exchange for the

analytical solution. In which case, an approximate GP implementation is
needed.

* Performance of multi-output bounded GP is up next.
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O2IMS  |inear Regression Bayes’ View
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* Marginal likelihood (or the evidence)

p(D|6) = H;O REA)

2mo? 202 \C /
YT
()
0L®) _ —2XTy +2X1X0 =0
RL,
0= (X"X)" X"y
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« ELBO derivation

logp (y.|0) = 10g/p('y*jf*l9)df*
Log evidence .| 0)
> / (f*)logp(y*’f‘ daf.
(fx)
£(9)
Evidence Lower Bound
(ELBO)

Variation family

q(f«)

Final solution

Smallest KL

N

P(y.|0)

ELBO
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y*: f*lg)
q (fx)

£(6) = / 1(F.)log 2! af.

p(f*ly*,ﬂ)
q(f+)

= [atie [p(y*w)
— logp(ys|6) / 1 (£) df

p(fly*,ﬁ')
+/q(.f*)10g AL

— | o p(f*‘y*ag)
= logp(y.|0) {/q(ﬁ.‘)lg () df}

| 7
Y

KL (q(fo)llp(felys.0))
AN

o

Predictive posterior
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