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B |nvolving heterogeneous models
B Requiring significant computational resources
B Problems from data transfer and synchronization

B Error propagation between coupled numerical techniques

EM, thermal, and structural The electric field around an air Heat transfer simulations
analysis of the microstrip phantom inside of a birdcage coil in an microwave oven
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Physics-Informed Neural Networks
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NG LT . Key points of state-of-the-art PINN
X Y (o} o !
® Unsupervised training
1 (o) (6)
| ® Computational efficiency
X o ()
| ® Better generalization ability
: o o
R e . ® Real-world applications
I— Small data Some data Big data

PINN algorithm

G. E. Karniadakis, |. G. Kevrekidis, L. Lu, P. Perdikaris, S.
Wang, and L. Yang, “Physics-informed machine learning,” |
Nature Reviews Physics, vol. 3, no. 6, pp. 422-440, 2021. Lots of physics Some physics No physics

———————————

AMTT-S
|IEEE MICROWAVE THEORY &
Z TECHNOLOGY SOCIETY



onIMS

Connecting Minds. Exchanging Ideas. P hyS i CS-I nfo r m ed N e u ra I N etwo rkS

a b

=0 ®
SAN DIEGO

a b
Tomo-BOS setup 3D temperature data

1.1e+00

Velocity(m/s)

o
3
=
o
k)
o
>

ey

Physics-informed
c neural network

3D velocity 3D pressure /

6.3e+03
| 9
4000
= 3000
£ 2000

= 1000
- 2.0e+00

— 2.6e+00
+2

Pressure(mmHg)
Wall Shear Stress(Pa)

ko
-2.6e+00

Physics-informed filtering of in-vivo 4D-flow
magnetic resonance imaging data of blood
flow in a porcine descending aorta.

Inferring the 3D temperature, velocity, and
pressure flow over an espresso cup with PINN.
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Temperature distribution

B oT
%:—VXE—M POy = Q@+ V- (kVT) + Vi(Tp — T)
D L _ 2
—%lt):VxH—J Q=o(B)

T

FDTD solver for
EM and thermal such as FEM and FDTD. However, there are several questions to be addressed:

Coupled electromagnetic-thermal problems can be analyzed by numerical solvers,

« Complex mathematical models and enormous computing resources requirement
* Error propagation between coupled multiphysics numerical solvers

» Appropriate spatial discretization for different solvers

Therefore, we combine the robust/well-understood FDTD solver for the
electromagnetic simulation with a neural network for the thermal simulation.

Electric field
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Temperature distribution

Ground-truth data
—————————————————— =Q+ V- (kVT)+V,(T, — T)
FDTD solver for Inout , Output
EM and thermal P P
_ 1 _ U-net
framework

Electric field Dissipated power Predicted temperature
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Replace the numerical thermal solver in electromagnetic-thermal simulations with
physics-informed neural networks.

Material properties Steady-state temperature

Steady-state U-Net (SSUN)
‘."““ ""”“ . . .
OO o LTI

0000000 . t=0min t=2min t=4min
LLLCITT ] ) (OO
00009 0000000
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FDTD solver for
electromagnetic field

1

t=6min t=8min t=10min

Temporal evolution of
temperature

Electric field Dissipated power Time-domain U-Net (TDUN)
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Implement the heat equation and boundary conditions into the neural
networks to enable the unsupervised training.

Heat equation: pcp% =Q+ V- (kVT) +V,(T, — T)

Approximate the partial derivative of the temperature
with respect to time with forward finite difference:

o 0 o l
n+1 n Ataliv 2n n
g - pC (Q +EVITT A+ V;(Tb -T )) =0 Atrpun Atrpun
p
For N successive steps: t mN+1
n+N-1 Atd e 0o o l:
Z (Tz+1 Ti — pr (Q + (kV2T") + Vi(T} — T’))) ~0

Then, the loss function of the TDUN becomes:
n+N-1 ) Atdi'g ) . 2

Lrpyn = Z Ty C, (Q + (KV?T*) 4 Vi(Ty — Tz))‘
1=n p

t(m+1)

| Update of FTCS =~ — Update of TDUN
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Implement the heat equation and boundary conditions into the neural
networks to enable the unsupervised training.

Heat equation: pcp% =Q+ V. (kVT) +Vy(T, — T)

Loss function: Lrpyns Lssyn
il . At g, , 12
Lrppy =y [T7=T"" 4 . (Q + (kV2T") + Vi(T, — TY)))| Update
i=n p N

or Dissipated power parameters Temperature

Robin boundary condition: —k(—) = W(T, — T}) density and domain distribution (T)
on / properties

. . Tij—Ti 1 Tij+Ti 1,
In a discretized form: —k(#) = h(% — Tf) Input Output

U-nets

(2k — hA:I:)T,-_l,j + 2hA$Tf
2k + hAz

Each element at the boundary: T;; =
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Details of the U-Net:

X16 16 1616 Y
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32 % 32
32 x 32

#2128 128 128 128 ® = Conv3 x 3, ReLU
> = — »> =

2 256 256 256 256 & = Max pool2 x 2
s3]
he ad — > » X = Transconv2 x 2

Skip connection

16 x 16
16 > 16
¥
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: ) TDUN input: T?: initial temperature
Details of the U-Net: distribution (K)
X1616 1616 Y Y

Q: dissipated power

a1, | - . & Boundary & density (W/m?)
% 3 dition % . .
: = condimon = k: heat conductivity (W/m/K)
174 32 32 .
32 32 by C,: heat capacity (J/kg/K)
> - ! ol - - p: material density (kg/m3)
B T TDUN output
o 3 output:
T o> > ' e » » X P 12 N
Bl ® _an=12,.N, i
2 128 128 128 128 ® = Conv3 x 3, ReLU {Tl’] } N successive
= = , _ steps of temperature (K)
x> - —— > > X = Skip connection
T e o256 256 256 256 % » Maxpool2 X 2
x = = > = = x = Transconv?2 x 2
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PML

Breast tissue

Point sources

Computational Domain
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TABLE I
ELECTRICAL PROPERTIES OF MATERIALS IN THE SIMULATION AT 2 GHzZ
Relative Relative Electrical
Permittivity Permeability Conductivity
Er W o(S/m)
Breast tissue 8.163 + 0.577 1 0.497 + 0.069
Benign Tumor | 21.664 4+ 1.559 1 0.955 + 0.122
Cancer 63.008 &+ 2.108 1 4.164 + 0.074
TABLE II
THERMAL PROPERTIES OF MATERIALS IN THE SIMULATION
Thermal Heat .
Conductivity Capacity ]ie“s“%
k(Wm/K)  Cp(J/kg/K) p(kg/m?)
Breast 0.500 3770 10004100
Benign Tumor | 0.580+0.02  3600+£200  1000£100
Cancer 0.58040.02 36004-200 1000+100
Blood 3622.5 10004100

4 IEEE
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Training cases

or
Robin boundary condition: —k(a) = h(T — Ty)
Heat transfer coefficient: h = 5W /m?/K

Testing cases pC % =Q+ V. (kVT) +Vi(T, — T)
e Eliminate the temperature of flowing blood:
T =T -T,
T’ - ,
Both training data and testing data include benign and Pcpw =Q + kV'T — W,GT

malignant tumors. The induced temperature should be in

_ 128 128 |T i ] ( J)‘
excess of 323.15 K (50°C) to ablate tumor cells. The Relative error: &= 82 > > 1 J) —0

i=1 j=1

source amplitude is set to 300 V/m for benign tumors

and 100 V/m for malignant tumors.
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Choice of N and At ;;, N: the number of steps in each batch of TDUN
0.0020 i . e
. 150 At ;.- the time step within each batch
= .
00015 g Atrpyny = NXAt,;,: effective time step
g r100 © o o
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| I
| | : tan | : t(m+1)1¥

| Update of FTCS  —>Update of TDUN
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TDUN prediction FTCS ground-truth TDUN prediction FTCS ground-truth
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The time step of the TDUN is not limited
by the stability condition of finite-
difference method, in this work,
AtTDUN - 1 SAtFTCS'

TABLE III
COMPARISON OF EXECUTION TIME OF FTCS AND TDUN

FTCS (s/case) TDUN (s/case)
Intel-i5 CPU 22.74 4.34
NVidia GTX 3090 GPU / 1.28

N )
SAN DIEGO

Both the SSUN and TDUN is trained
based on the embedded heat equation.
They generalize well to:

« Shape of objects

 Number of objects

 Amplitude of the source

 Material properties
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Physics-informed U-nets to replace the thermal solvers

The network is trained in an unsupervised approach, no ground-truth data needed
Coupled numerical method with neural networks for multiphysics modeling

Numerical results demonstrate the accuracy, efficiency and generalization ability of the

proposed approach
Future work

H PINN for EM simulation: test & evaluation

B PINN-based 3-D time-domain EM-thermal solver
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