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n Background and motivation

n Review of electromagnetic-thermal simulations

n Physics-informed neural networks for electromagnetic-thermal simulations

n Numerical Results

n Conclusions

Outline
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n Involving heterogeneous models

n Requiring significant computational resources

n Problems from data transfer and synchronization

n Error propagation between coupled numerical techniques

Challenges of multi-physics simulation

EM, thermal, and structural
analysis of the microstrip

The electric field around an air
phantom inside of a birdcage coil

Heat transfer simulations
in an microwave oven
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Physics-Informed Neural Networks
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Key points of state-of-the-art PINN

l Unsupervised training

l Computational efficiency

l Better generalization ability

l Real-world applications

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. 
Wang, and L. Yang, “Physics-informed machine learning,” 
Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.

PINN algorithm
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Inferring the 3D temperature, velocity, and 
pressure flow over an espresso cup with PINN.

Physics-informed filtering of in-vivo 4D-flow 
magnetic resonance imaging data of blood 
flow in a porcine descending aorta. 
.

Physics-Informed Neural Networks
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Electromagnetic-thermal analysis

Coupled electromagnetic-thermal problems can be analyzed by numerical solvers, 

such as FEM and FDTD. However, there are several questions to be addressed: 

• Complex mathematical models and enormous computing resources requirement

• Error propagation between coupled multiphysics numerical solvers 

• Appropriate spatial discretization for different solvers

Therefore, we combine the  robust/well-understood FDTD solver for the 
electromagnetic simulation with a neural network for the thermal simulation.

FDTD solver for 
EM and thermal

Electric field

Temperature distribution
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Electromagnetic-thermal analysis

FDTD solver for 
EM and thermal

Electric field

Temperature distribution

Dissipated power Predicted temperature

U-net 
framework

Input

Ground-truth data

Output
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PINNs for electromagnetic-thermal simulation

FDTD solver for 
electromagnetic field

Dissipated power

Steady-state temperature

Electric field

Material properties U-nets

…

…

Temporal evolution of 
temperature

Replace the numerical thermal solver in electromagnetic-thermal simulations with
physics-informed neural networks.

Goal:

Steady-state U-Net (SSUN)

Time-domain U-Net (TDUN)
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PINNs for electromagnetic-thermal simulation

Implement the heat equation and boundary conditions into the neural
networks to enable the unsupervised training.

Key points:

Heat equation: 

Approximate the partial derivative of the temperature 
with respect to time with forward finite difference:

For N successive steps:

Then, the loss function of the TDUN becomes:

Update of FTCS Update of TDUN
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PINNs for electromagnetic-thermal simulation

Implement the heat equation and boundary conditions into the neural
networks to enable the unsupervised training.

Key points:

Heat equation: 

Loss function:

Robin boundary condition: 

In a discretized form: 

Each element at the boundary: 

U-nets

Dissipated power
density and domain 

properties

Temperature 
distribution (T)

Input Output

Update
parameters

&
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PINNs for electromagnetic-thermal simulation

Details of the U-Net:
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PINNs for electromagnetic-thermal simulation

Details of the U-Net: TDUN input:

𝝆: material density (kg/𝐦𝟑)

𝑪𝒑: heat capacity (J/𝐤𝐠/𝐊)

𝒌: heat conductivity (W/m/K)

𝑻𝟎: initial temperature
distribution (K)

𝑸: dissipated power
density (W/𝒎𝟑)

TDUN output:

{𝑻𝒊,𝒋}𝒏(𝟏,𝟐,…,𝑵:N successive
steps of temperature (K)
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Numerical experiments

Domain settings and materials

Building database

Study of hyperparameters

Discussion of the results

Numerical results
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Numerical experiments - Domain settings and materials

Computational Domain

PML

Breast tissue

Tumor

Point sources
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Numerical experiments – building database
Training cases

Testing cases

Both training data and testing data include benign and

malignant tumors. The induced temperature should be in

excess of 323.15 K (50℃) to ablate tumor cells. The

source amplitude is set to 300 V/m for benign tumors

and 100 V/m for malignant tumors.

Robin boundary condition: 

Eliminate the temperature of flowing  blood:

Relative error: 

Heat transfer coefficient: 
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Numerical experiments – study of hyperparameters

Choice of N and 𝚫𝒕𝒅𝒊𝒗 N: the number of steps in each batch of TDUN

𝚫𝒕𝒅𝒊𝒗: the time step within each batch

𝚫𝒕𝑻𝑫𝑼𝑵 = 𝑵×𝚫𝒕𝒅𝒊𝒗: effective time step

𝚫𝒕𝑭𝑻𝑪𝑺: largest time step allowed by the stability limit 
Update of FTCS Update of TDUN
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Numerical experiments - Results

TDUN prediction FTCS ground-truth TDUN prediction FTCS ground-truth
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Numerical experiments - Discussion

Efficiency: compare training time and
execution time on an intel-I5 CPU, and
Nvidia GTX 3090 GPU

The time step of the TDUN is not limited
by the stability condition of finite-
difference method, in this work,
𝚫𝒕𝑻𝑫𝑼𝑵 = 𝟏. 𝟓𝚫𝒕𝑭𝑻𝑪𝑺.

Generalization ability:

Both the SSUN and TDUN is trained

based on the embedded heat equation.

They generalize well to:

• Shape of objects

• Number of objects

• Amplitude of the source

• Material properties
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Conclusion

n Physics-informed U-nets to replace the thermal solvers

n The network is trained in an unsupervised approach, no ground-truth data needed

n Coupled numerical method with neural networks for multiphysics modeling

n Numerical results demonstrate the accuracy, efficiency and generalization ability of the 

proposed approach

n PINN for EM simulation: test & evaluation

n PINN-based 3-D time-domain EM-thermal solver

Future work
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Thank you!


