

TU3A-4

Physics-Informed Neural Networks for Multiphysics Simulations:

Application to Coupled Electromagnetic-Thermal Modeling

Shutong Qi and Costas Sarris

Outline

- Background and motivation
- Review of electromagnetic-thermal simulations
- Physics-informed neural networks for electromagnetic-thermal simulations
- Numerical Results
- Conclusions

Challenges of multi-physics simulation

- Involving heterogeneous models
- Requiring significant computational resources
- Problems from data transfer and synchronization
- Error propagation between coupled numerical techniques

EM, thermal, and structural analysis of the microstrip

The electric field around an air phantom inside of a birdcage coil

Heat transfer simulations in an microwave oven

Physics-Informed Neural Networks

PINN algorithm

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, "Physics-informed machine learning," Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.

Key points of state-of-the-art PINN

- Unsupervised training
- Computational efficiency
- Better generalization ability
- Real-world applications

Physics-Informed Neural Networks

Inferring the 3D temperature, velocity, and pressure flow over an espresso cup with PINN.

Physics-informed filtering of in-vivo 4D-flow magnetic resonance imaging data of blood flow in a porcine descending aorta.

Electromagnetic-thermal analysis

Temperature distribution

$$egin{align} rac{\partial ec{B}}{\partial t} &= -
abla imes ec{E} - ec{M} \ rac{\partial ec{C}_p rac{\partial T}{\partial t}}{\partial t} &= Q +
abla \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{H} - ec{J} \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{H} - ec{J} \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}}{\partial t} &=
abla imes ec{V} \cdot (k
abla T) + V_s (T_b - T) \ rac{\partial ec{D}$$

Coupled electromagnetic-thermal problems can be analyzed by numerical solvers, such as FEM and FDTD. However, there are several questions to be addressed:

- Complex mathematical models and enormous computing resources requirement
- Error propagation between coupled multiphysics numerical solvers
- Appropriate spatial discretization for different solvers

Therefore, we combine the robust/well-understood FDTD solver for the electromagnetic simulation with a neural network for the thermal simulation.

Electromagnetic-thermal analysis

Temperature distribution

Goal: Replace the numerical thermal solver in electromagnetic-thermal simulations with physics-informed neural networks.

Key points: Implement the heat equation and boundary conditions into the neural networks to enable the unsupervised training.

Heat equation:
$$ho C_p rac{\partial T}{\partial t} = Q +
abla \cdot (k
abla T) + V_s (T_b - T)$$

Approximate the partial derivative of the temperature with respect to time with forward finite difference:

$$T^{n+1}-T^n-rac{\Delta t_{div}}{
ho C_p}ig(Q+k
abla^2T^n+V_s(T_b-T^n)ig)=0$$

For *N* successive steps:

$$\sum_{i=n}^{n+N-1} \left(T^{i+1}-T^i-rac{\Delta t_{div}}{
ho C_p}ig(Q+(k
abla^2T^i)+V_s(T_b-T^i)ig)
ight)=0.$$

Then, the loss function of the TDUN becomes:

$$L_{TDUN} = \sum_{i=n}^{n+N-1} \left| T^i - T^{i+1} + rac{\Delta t_{div}}{
ho C_p} ig(Q + (k
abla^2 T^i) + V_s (T_b - T^i) ig)
ight|^2$$

Update of FTCS

Update of TDUN

Key points: Implement the heat equation and boundary conditions into the neural networks to enable the unsupervised training.

Heat equation:
$$ho C_p rac{\partial T}{\partial t} = Q +
abla \cdot (k
abla T) + V_s (T_b - T)$$

Loss function:

$$L_{TDUN} = \sum_{i=n}^{n+N-1} \left| T^i - T^{i+1} + rac{\Delta t_{div}}{
ho C_p} ig(Q + (k
abla^2 T^i) + V_s (T_b - T^i)ig)
ight|^2$$

Robin boundary condition: $-k \left(\frac{\partial T}{\partial \mathbf{n}} \right) = h(T_w - T_f)$

In a discretized form: $-kigg(rac{T_{i,j}-T_{i-1,j}}{\Delta x}igg)=higg(rac{T_{i,j}+T_{i-1,j}}{2}-T_figg)$

Each element at the boundary: $T_{i,j}=rac{(2k-h\Delta x)T_{i-1,j}+2h\Delta xT_f}{2k+h\Delta x}$

Details of the U-Net:

Details of the U-Net:

T⁰: initial temperature distribution (K)

Q: dissipated power density (W/ m^3)

k: heat conductivity (W/m/K)

 C_p : heat capacity (J/kg/K)

 ρ : material density (kg/m³)

TDUN output:

TDUN input:

 $\{T_{i,j}\}^{n=1,2,...,N}$: N successive steps of temperature (K)

Numerical experiments

Domain settings and materials

Building database

Numerical results

Study of hyperparameters

Discussion of the results

Numerical experiments - Domain settings and materials

Computational Domain

TABLE I ELECTRICAL PROPERTIES OF MATERIALS IN THE SIMULATION AT 2 GHZ

	Relative	Relative	Electrical
	Permittivity	Permeability	Conductivity
	$arepsilon_r$	μ_r	σ(S/m)
Breast tissue	8.163 ± 0.577	1	0.497 ± 0.069
Benign Tumor	21.664 ± 1.559	1	0.955 ± 0.122
Cancer	63.008 ± 2.108	1	4.164 ± 0.074

TABLE II
THERMAL PROPERTIES OF MATERIALS IN THE SIMULATION

	Thermal Conductivity k(W/m/K)	Heat Capacity $C_p(\mathrm{J/kg/K})$	Density $ ho({ m kg/m^3})$
Breast	0.500	3770	1000 ± 100
Benign Tumor	0.580±0.02	3600±200	1000±100
Cancer	0.580±0.02	3600±200	1000±100
Blood		3622.5	1000±100

Numerical experiments – building database

Training cases

Heat transfer coefficient: $h=5\mathrm{W/m^2/K}$

$$ho C_p rac{\partial T}{\partial t} = Q +
abla \cdot (k
abla T) + V_s (T_b - T)$$

Eliminate the temperature of flowing blood:

$$T^{'}=T-T_{b}$$

$$ho C_p rac{\partial T^{'}}{\partial t} = Q + k
abla^2 T^{'} - W_b C_b T^{'}$$

Both training data and testing data include benign and malignant tumors. The induced temperature should be in excess of 323.15 K (50°C) to ablate tumor cells. The Relative error: $\mathcal{E}_{rel} = \frac{1}{128^2} \sum_{i=1}^{128} \sum_{i=1}^{128} \frac{|T_p(i,j) - T_r(i,j)|}{T_r(i,j) - 310}$ source amplitude is set to 300 V/m for benign tumors and 100 V/m for malignant tumors.

Relative error:
$$\mathcal{E}_{rel} = rac{1}{128^2} \sum_{i=1}^{128} \sum_{j=1}^{128} rac{|T_p(i,j) - T_r(i,j)|}{T_r(i,j) - 310}$$

Numerical experiments – study of hyperparameters

Choice of N and Δt_{div}

 Δt_{FTCS} : largest time step allowed by the stability limit

N: the number of steps in each batch of TDUN

 Δt_{div} : the time step within each batch

 $\Delta t_{TDUN} = N \times \Delta t_{div}$: effective time step

Update of FTCS

→ Update of TDUN

Numerical experiments - Results

Numerical experiments - Discussion

Efficiency: compare training time and execution time on an intel-I5 CPU, and Nvidia GTX 3090 GPU

The time step of the TDUN is not limited by the stability condition of finite-difference method, in this work, $\Delta t_{TDUN} = 1.5 \Delta t_{FTCS}$.

TABLE III
COMPARISON OF EXECUTION TIME OF FTCS AND TDUN

	FTCS (s/case)	TDUN (s/case)
Intel-i5 CPU	22.74	4.34
NVidia GTX 3090 GPU	1	1.28

Generalization ability:

Both the SSUN and TDUN is trained based on the embedded heat equation.

They generalize well to:

- Shape of objects
- Number of objects
- Amplitude of the source
- Material properties

Conclusion

- Physics-informed U-nets to replace the thermal solvers
- The network is trained in an unsupervised approach, no ground-truth data needed
- Coupled numerical method with neural networks for multiphysics modeling
- Numerical results demonstrate the accuracy, efficiency and generalization ability of the proposed approach

Future work

- PINN for EM simulation: test & evaluation
- PINN-based 3-D time-domain EM-thermal solver

Thank you!

