

Tu3B-1

A 450W GaN-Based Limiter for S-Band Application

R. Mathieu*, H. Debergé*, E. Richard*, N. Belouchrani*, C. Chang*, M. Camiade*, A. Bessemoulin*
M. Olivier*, J-F. Goupy*, M. Stanislawiak*

*United Monolithic Semiconductors SAS, France

\$Thales LAS-SRA, France

- Introduction
- UMS GH15 technology
- Design consideration
- Measurement results
- State of the art
- Conclusion
- Acknowledgment

- Introduction
- UMS GH15 technology
- Design consideration
- Measurement results
- State of the art
- Conclusion
- Acknowledgment

Introduction

- New receivers require SWaP (Size Weight and Power) components in order to become more and more integrated
 - RF Power Limiters are key components for receiver, they must ensure :
 - High power handling
 - Low insertion losses
 - Low flat Power Leakage
 - Integrability
- Usually Limiter are made of Silicon or GaAs PIN Diodes
- → Alternative proposed here is to use GaN technology to realize integrated high power limiter

- Introduction
- UMS GH15 technology
- Design consideration
- Measurement results
- State of the art
- Conclusion
- Acknowledgment

UMS GH15-1x technology

- Applications up to Ka Band (35 GHz)
- Technology Features
 - 4 Inch AlGaN/GaN on 70µm SiC substrate
 - Thin an thick metal Layers
 - Air bridges
 - Vias interconnects
 - Mechanical BCB protection

Components

- GaN HEMT with Lg = 150 nm
 - Source terminated field plate topology
 - Switch type devices
 - 20 years life time @ Tj ROR = 200°C
- Diodes
- Inductors
- 175 pF/mm² MIM capacitors (DLD)
- 350 pF/mm²MIM Capacitors (DHD)
- TaN / TiWSi thin film resistors

UMS GH15-1x technology

- Technology Features (What's News)
 - Over Via capacitor (DLD and DHD)
 - Moisture Protection
 - Optimized transistor layout for low-noise applications
 - Extended frequency capabitlity

- Introduction
- UMS GH15 technology
- Design consideration
- Measurement results
- State of the art
- Conclusion
- Acknowledgment

- RF Power Limiter key parameters
 - Bandwith → Low Coff
 - Insertion losses → High Roff / Low Coff
 - Power handling / Flat leakage → Low Ron
 - Maximum peak current

GaN Limiter power cell

- → Diodes are used to reduce Ron resistance
- → Limiter triggering level is set by Gate voltage (Vg_block)

$$I_{peak} = 2\sqrt{\frac{2 P_{RF_in}}{R_0}} \sim 6A$$

- 2 Stage / quarter-wave structure
- 1st stage sizing
 - Sustain 250W (~6A)
 - Limited 1.4 A/mm saturation current per transistor
 - L_tune is used to accord Coff
 - Quarter-wave length to maximize second stage performances (isolation and flat leakage)
- 2nd stage sized to minimize flat power leakage

Manufactured MMIC

– Die size : 2,5 mm x 2 mm

1st stage sizing

-W = 2x4x8x150 um

• 2nd stage

-W = 2x6x40 um

Diodes

 Sized to handle until 8mA of RMS current during hard limitation of the limiter

- Introduction
- UMS GH15 technology
- Design consideration
- Measurement results
- State of the art
- Conclusion
- Acknowledgment

On wafer measurements / Small signal (10 dies)

- Insertion Losses < 0.6 dB on [2.6 3.8] GHz
- Input reflexion coefficient < -13 dB
- Output reflexion coefficient < -15 dB

Text fixture / High power measurements

- Test conditions
 - -Temp = 25°C
 - Pulsed input power
 - Duty cycle 15%
 - <10ms

- Flat power leakage < 20 dBm
- Triggering level : P_{in1dB} = 16 dBm

- RF step stress test
- Test conditions (4 Devices)
 - Tcase = 75 ° C
 - Freq = 3.1 GHz
 - Pulsed input power
 - Duty cycle 15%
 - <10ms
 - From 150W to 450W by 10W step
 - 10 min between each step

Power Handling of 450W (pulsed) achieved

Amplitude recovery time measurement

Low amplitude recovery time < 200 ns @450W pulsed

• First stage limiter temperature measurement

- Test conditions
 - -Temp = 75°C
 - Pulsed input power
 - Duty cycle 15%
 - <10ms

ROR junction temperature is reached after 55 dBm of pulsed input power

- Introduction
- UMS GH15 technology
- Design consideration
- Measurement results
- State of the art
- Conclusion
- Acknowledgment

State of the art

Ref.	Technology	Freq (GHz)	Limiting cell	Pmax (W)	Insertion Loss (dB)	Leakage (dBm)
[3]	GaAs	2-5	VPIN diodes	100 (CW)	0.5	16
[4]	BiCMOS	3	PIN diodes	63 (P)	0.5	20
[5]	GaAs	3-28	VPIN diodes	4 (CW)	0.39	17
[6]	GaN	1-6	FET	50 (CW)	0.6	22
This work	GaN	2.6-3.6	Cold FET + Schottky diodes	450 (P)	0.5	<20

- Introduction
- UMS GH15 technology
- Design consideration
- Measurement results
- State of the art
- Conclusion
- Acknowledgment

Conclusion

- Robust High power 2 stages GaN limiter
 - Low insertion losses < 0.6 dB
 - State of the art power handling
 - >450 W pulsed input power
 - Tj < 200 °C @ 55 dBm
 - Low Recovery time limiter
 - <200 ns at 450Wc

- Introduction
- UMS GH15 technology
- Design consideration
- Measurement results
- State of the art
- Conclusion
- Acknowledgment

Acknowledgment

Author would like to acknowledge the assistance and support of Thales and the French MOD

