

Tu3B-4

A Balun-Integrated On-Chip Differential Pad for Full-Multi-Band mmWave-THz Measurements

J. Grzyb, M. Andree, P. Hillger, T. Bucher, U. R. Pfeiffer

University of Wuppertal, Germany

Outline

- Outline
- Motivation with problem statement and main objectives
- On-chip pad at mmWave/THz frequencies
- Planar Marchand balun: background with overview
- Balun-integrated differential pad: implementation details
- Measurement results
- Conclusions with comparison to the previous work

Motivation with problem statement

- Motivation: broadband characterization of differential on-chip active circuits in the upper mmWave/THz band
- Requirements:
 - Full/multi-band operation (nonlinear circuits with harmonic content)
 - RL around 20 dB for accurate characterization of large-signal operated circuits (load/pull effects hard to de-embed)
 - Very low imbalance for near-ideal differential excitation
- Goal: only 2nd-tier on-chip transmission calibration required after initial 2-port calibration with a standard cal substrate

On-chip pad at THz frequencies

- On-chip 50Ω pads in 7-layer BEOL SiGe HBT
 - V-to-D band (TM2/M3) and J-band (TM2/M1)
 - Gnd below pad not removed (substrate coupling)
 - Poor RL/IL above 200 GHz
 - Up to D-band modeled by LC (21 pH/21fF)
 - J-band-> distributed 2-port with frequency-

dependent Z_{out} scaled down to 20 Ω

On-chip pad commonly compensated with a shunt stub at lower mmWave frequencies

- Coaxial Marchand compensated balun
 - Multielement bandpass network of 4 different transmission lines in the general case (design flexibility)
 - Z₁/Z₂ completely shielded from Z_{s1} and Z_{s2}!
 - General design trends for broadband operation with an increase in Z_L/Z_☉ transformation ratio (filter synthesis)
 - Z₁,Z₂ increase, Z_{s1},Z_{s2} decrease
 - RL and bandwidth traded against each other
 - Bandwidth decreases with transformation ratio

[pavio1990] A. Pavio, A. Kikel, "A monolithic or hybrid broadband compensated balun," IEEE MTT-S Dig., May 1990, Dallas, TX, USA, pp. 483-486

- Planar Marchand compensated balun
 - For sufficient isolation between Z1,Z2 and Zs1,Zs2
 extremely tight coupling (tn), large spacing to
 global ground (ts), and high Wb/Wt ratio required
 - Practically unfeasible to fulfill for IC technologies
 with thin BEOL and close-proximity global ground
 - For 300 GHz operation, strip width further limited by physical implementation of a quarter-wavelength

after [pavio1990]

[pavio1990] A. Pavio, A. Kikel, "A monolithic or hybrid broadband compensated balun," IEEE MTT-S Dig., May 1990, Dallas, TX, USA, pp. 483-486

Planar Marchand compensated balun (analysis)

- In general case, full modal analysis of the asymmetric coupled-lines in inhomogeneous medium required with 2 normal modes: 'c' and 'π'
- Both modes relate to a combination of voltages on 2 lines with the corresponding voltage ratios Rc and $R\pi$
- $-Zc2/Zc1=Z\pi2/Z\pi1=-Rc\cdot R\pi$
- 4x4 Z-matrix representation with linear superposition of 'c' and 'π' terms (θc and θπ generally different)
- Symmetrical lines: Rc=1 and R π =-1 (even/odd symmetry)
- Asymmetric lines in homogeneous medium (TEM): Rc= -Rπ
- Both capacitance and inductance matrix needed for normal mode parameters

[tsai1992] Ch. Tsai, and K.C. Gupta, "A generalized model for coupled lines and its applications to two-layer planar circuits," IEEE MTT., Dec. 1992, vol.40, no.12, pp. 2190-2199

after [tsai1992]

- Planar Marchand compensated balun (analysis)
 - Transmission line sections not isolated from each other -> complicated equivalent circuit without insight
 - Multiple transformers representing coupling between lines in each coupled-line section
 - Shunt stubs connected not only to the balanced Mai
 output (both forward as well backward transmission)
 - Original Marchand balun for Rc=1 and Rπ=∞
 (transformers disappear)

after [tsai1992]

Coupled lines A

[tsai1992] Ch. Tsai, and K.C. Gupta, "A generalized model for coupled lines and its applications to two-layer planar circuits," IEEE MTT., Dec. 1992, vol.40, no.12, pp. 2190-2199

- Planar Marchand balun: overview of typical design strategies
 - Symmetric coupled lines (simple even/odd mode analysis)
 - Very restricted design space with closely related Zoe/Zoo (k), impedance transformation ratio, operation bandwidth, and RL
 - Large Zoe/Zoo required for sufficient balance and bandwidth -> tight coupling between lines with large separation to global ground
 - Asymmetric (typically broadside) coupled lines
 - Tight coupling feasible but not really exploited in detail
 - Finite isolation between lines ignored in the approximate design procedure
 - Large separation to global ground enforced to improve isolation (missing design parameter in terms of shunt stubs)

Main request:

More accurate and rigorous analysis to better understand design trade-offs

- Imperfect isolation between lines due to the close-proximity ground
- Impedance transformation with imperfectly isolated lines
- Layer choice in view of the imbalance and operation bandwidth
- Broadband compensation methods with the close-proximity ground
- Link between impedance transformation, modal line parameters, and physical line cross-sections (multi-conductor analysis)

Main implementation details

- Buried line sections TM1/M3 in SiO₂ BEOL stack
 (5μm overlay, 2.8μm vertical spacing)
- Velocity mismatch between 'c' and ' π ' modes < 5%
- Operated in the proximity of critical point
 - -> kc~kı, Rc and Rπ in-phase
 - -> 2 modal impedances become negative
 - -> near ideal backward-coupling directional coupler
- Gnd plane underneath the lines removed to improve coupling, close-proximity side gnd present
- The assumption of high line isolation violated: R_c <1, R_{π} far below infinity

300 GHz differential pad

- Impedance transformation ratio (In -> Zint1)
 - Provided by the cascaded sub-λ/4 long nonuniformly-sized line sections '1-2-3' in view of the frequency-dependent pad impedance
 - Initial guess: '1-2-3' uniform $\lambda/4$ long line section
 - Assumptions
 - 1.matched phase velocity for 'c' and ' π ' modes
 - 2. perfect ac short at a center tap of the top strip '3'

$$Z_{eff} = \frac{Z_{c,b} \cdot Z_{\pi,t} \cdot (R_{\pi} - R_c)}{Z_{\pi,t} + Z_{c,b} \cdot R_{\pi} \cdot R_c}$$

- Zeff = $Z_{\pi,t}/R_c$ if $R_{\pi}>>R_c$, in particular Zeff = $Z_{\pi,t}$ if $R_c=1$, where 't' and 'b' stand for top and bottom line, respectively
- The condition from above not true for the presented design

- Close-proximity ground (separation 's')
 - Impact on the balun transformation ratio accounted for accurately from a general multi-conductor analysis of the line cross-section (Ansys 2D extractor)
 - Separation 's' between coupled-line section and side ground-plane creates a 'shunt stub' equivalent in the original Marchand balun
 - Matching at the balanced output
 - Broadband balun compensation with different slot lengths along line sections '1-2-3' and '3-4-5'
 (Ze1, Ze5) (more efficient than line section '3-4-5')

- Main implementation details (cd)
 - Open stub '3-4-5' exploited for the bandwidth extending off-center design (2 in-band RL minima) by different length and impedance profile as compared to '1-2-3'
 - Zes further exploited for balancing the balun output
 - Line sections optimized numerically

Sec.	w_t/w_b /s	K	$\theta_{0.3THz}$	$ R_c / R_\pi $		$\overline{Z_{c,b} / Z_{\pi,t}}$	$ z Z_{eff} $
	$[\mu \mathrm{m}]$	_	$[\deg]$	_		$[\Omega]$	$[\Omega]$
1	8/12/8	0.7	19.5	0.61/3.8		57/46	47
2	10/12/11	0.77	36.5	0.65/3		59/46	41
3	6/12/10	0.69	15.5	0.62/3.92		62/53	56
4	6/12/12	0.72	38	0.63/3.63		64/54	53
5	2/12/8	0.56	10	0.55/5.85		64/71	90

Imperfect isolation

Comparable $Z_{c,b}$ and $Z_{\pi,t}$

cntr f

high f

low f

300 GHz differential pad

Simulation results: balun with pad vs. balun w/o pad

□ Pad-integrated balun: 220 - 320 GHz -> IL=1.25 - 1.4dB, RL<20 dB!,

10dB RL bandwidth=180 GHz, 3-dB IL bandwidth 260 GHz,

Pad IL=0.6dB @ 160 GHz, $\lambda/4$ -long 50 Ω u-strip IL=0.6 dB @ 300 GHz

- \square Pad-integrated balun vs. 50-to-100 Ω balun:
 - lower IL -> shorter implementation, tighter line coupling, co-design (bandpass network)
 - lower bandwidth -> complex load with higher impedance transformation ratio (20-to-100 Ω)

Simulation results: RL/IL, bandwidth trade-offs

- □ Open stub '3-4-5' exploited for bandwidth extending off-center design (2 in-band RL minima)
- ☐ Length of '3-4-5' can be further changed to improve bandwidth at the cost of RL
- ☐ Length of shunt stubs (Ze1,Ze5) less critical for RL/bandwidth compared to open stub '3-4-5'
- ☐ Length of '3-4-5' less critical for output balance (see next slide)

Simulation results: output balance

- ☐ Length of shunt stubs (Z₀₁,Z₀₅) used to adjust balance with low sensitivity to RL variation
- ☐ Length of open stub '3-4-5' less critical for output balance
- ☐ Space 's' to side gnd not very sensitive to broadband balance compensation
- ☐ Very good broadband balance (even out-of-band): Amplitude < 0.3 dB, Phase < 1.6 deg

Measurement results (220-320 GHz)

- Initial TRL calibration with cal substrate
- Missing equipment for WR5/WR2.2 band
- Full-band covered with very good RL
- IL= 1.3-1.5 dB / balun-integrated pad
- ☐ Measured back-to-back in view of the challenges for balanced port characterization
- ☐ 2 different lengths ('sh'/'lg') for constructive/destructive reflections at balanced ports
- ☐ Good simulation/measurement correlation -> good balance/low RL at the balanced port
- ☐ Discrepancy: calibration/probe positioning accuracy, differences in physical BEOL constants

Measurement results (50-160 GHz)

- ☐ Measured back-to-back with 2 different lengths ('sh'/'lg')
- ☐ Very good simulation/measurement correlation with broadband low RL
- \square Multi-band operation (only 14GHz bandwidth reduction compared to 50-100 Ω balun)
- □ IL of 1.25-2.15 dB per single balun-integrated pad (improved IL with narrowband operation)

Conclusions/comparison

- Balun-integrated differential on-chip pads for mmWave/THz operation
 - Full-band/multi-band operation with low RL around 20 dB
 - Particularly dedicated to large-signal characterization of active circuits
- A general theory of asymmetric coupled-lines in inhomogeneous medium applied for design flexibility and performance improvement
 - Rigorous analysis with the impact of a close-proximity ground accounted for in the design process
 - Co-design with frequency-dependent pad impedance (bandpass filter)
- IL=1.3-1.5 dB, RL around 20dB with very good balance for 220-320 GHz

[ahmed2015] – IL=2.3-3.3dB, RL=15dB, amplitude/phase imbalance of 1.5dB/20deg for 200-325 GHz [ali2019] – IL=1.2-2.1dB, RL=15dB, amplitude/phase imbalance of 1.8dB/6deg for 110-220 GHz (simul. w/o pad) [song2014] – IL=1.7-4.7dB, RL=5-20dB, amplitude/phase imbalance of 1.5dB/7deg for 34-110 GHz

Thank you

Back-up

Simulation/design details (50-160 GHz)

High Zeff for compensation of capacitive pad

Simulation results: balun-integrated pad vs. $50-100\Omega$ balun

Sec.	w_t/w_b /s	K	$\theta_{0.1THz}$	$ R_c / R_\pi $	$ Z_{c,b} / Z_{\pi,t}$	$ Z_{eff} $
	$[\mu \mathrm{m}]$	_	[deg]	_	$[\Omega]$	12
ν_1	2/12/8	0.61	17	0.52/4.66	63/71	90
2	4/12/11	0.71	41	0.58/3.41	65/67	67
3	5/12/10	0.71	15	0.57/3.38	61/61	62
4	7/12/11	0.76	40	0.62/2.92	60/54	49
5	6/12/8	0.7	14	0.57/3.53	56/55	57

Back-up

[ahmed2015] – F. Ahmed, M. Furqan, and A. Stelzer, "A 200-325-GHz Wideband, Low-Loss Modified Marchand Balun in SiGe BiCMOS Technology," Proc. 45th European Microwave Conf. Sep. 2015, Paris, France, pp.40-43;

[ali2019] – A. Ali, J. Yun, H. J. Ng, D. Kissinger, F. Giannini, P. Colantonio, "High Performance Asymmetric Coupled Line Balun at Sub-THz Frequency," Appl. Sci., 2019,9, 1907;

[song2014] – I. Song, et.al., "A 34-110 GHz Wideband, Asymmetric, Broadside-Coupled Marchand Balun in 180 nm SiGe BiCMOS Technology," IEEE MTT-S Int. Microwave Symp. (IMS), June 2014, Tampa, FL, USA, pp. 1-4;

