



#### Tu3D-3

# PA Output Power and Efficiency Enhancement Across the 2:1 VSWR Circle using Static Active Load Adjustment

Gagan Deep Singh<sup>1</sup>, Hossein Mashad Nemati<sup>2</sup>, Morteza S. Alavi<sup>1</sup>, Leo C.N. de Vreede<sup>1</sup>,













### **Outline**



- Motivation
- Prior Art
- Proposed Concept
- Theoretical Analysis
- Simulation Results
- Measurement Results
- Conclusion







### **Motivation**



## Power amplifier output power, efficiency, and linearity are load dependent.



\*Chih-Ming Su, et al., "User's hand effects on EMC internal GSM/DCS mobile phone antenna," IEEE AP-S Int. Symp. Dig., Albuquerque, NM, USA, 2006



Hand effect on the radiation pattern\*



Mutual coupling in phased array antenna







### **Motivation**



Power amplifier output power, efficiency, and linearity are load dependent.



\*Chih-Ming Su, et al., "User's hand effects on EMC internal GSM/DCS mobile phone antenna," IEEE AP-S Int. Symp. Dig., Albuquerque, NM, USA, 2006



Hand effect on the radiation pattern\*



Mutual coupling in phased array antenna







#### **Prior Art**



#### 1.Isolator

- A. Handle large VSWR with plug & play
- B. Output power is still load dependent i.e.,  $P_{out} = (1 |\Gamma|^2)P_{in}$
- C. Difficult to integrate
- 2. Tunable matching network
  - A. Theoretically best solution (with ideal loss-less components)
  - B. High-Q conditions causing high insertion loss and bandwidth restrictions
  - C. Low-RF power handling capability
- 3. Supply adaptation with TMN
  - A. Relaxes high-Q requirement on TMN
    - a) TMN for complex load Supply adaptation with input drive for ohmic load
  - B. Needs DC-DC converters
  - C. RF-power handling gets limited due to TMN







## **Proposed Concept**



- 1. Core idea: match PA loading impedance using only active devices.
- 2. Enforce in-phase power combining at the load to maximize efficiency.













Proposed circuit topology: current sources with a coupler.

$$\begin{bmatrix} V_{M} \\ V_{high} \\ V_{low} \\ V_{L} \end{bmatrix} = \frac{Z_{0}}{\sqrt{1-C^{2}}} \begin{bmatrix} 0 & 0 & -j & -j & C \\ 0 & 0 & -j & C & -j \\ -j & -j & C & 0 & 0 \\ -j & C & -j & 0 & 0 \end{bmatrix} \begin{bmatrix} I_{M}e^{j\phi_{M}} \\ I_{high}e^{j\phi_{high}} \\ I_{low}e^{j\phi_{low}} \\ -I_{L} \end{bmatrix}$$
(b)

Z-matrix of the coupler used in the analysis.







- The loading impedance of the main stage  $(Z_M)$  can be adjusted
  - A.  $PA_{high}$  ( $I_{high}$ ) is used to increase  $Z_{M}$
  - B.  $PA_{low}$  ( $I_{low}$ ) is used to decrease  $Z_M$

$$Z_{M} = \frac{C^{2}}{1 - C^{2}} \frac{Z_{0}^{2}}{R_{L}} + \frac{C}{1 - C^{2}} \frac{Z_{0}^{2}}{R_{L}} \frac{I_{high}}{I_{M}} - \frac{Z_{0}}{\sqrt{1 - C^{2}}} \frac{I_{low}}{I_{M}}$$

The output power can also be adjusted

$$P_{out} = \frac{Z_0^2}{2R_L(1 - C^2)} \left[ CI_M + I_{high} \right]^2$$







The power utilization factor (PUF) for ohmic loads.

$$PUF = \frac{Power_{M}}{Power_{M} + Power_{Aux_{1}} + Power_{Aux_{2}}}$$

$$PUF = \frac{1}{\frac{Z_{0}}{R_{min}} - \sqrt{\frac{Z_{0}}{R_{min}}} + \sqrt{\frac{R_{max}}{Z_{0}}}}$$

- The  $R_{min}=25~\Omega$  and  $R_{max}=100~\Omega$  for the 2:1 VSWR.
- The PUF for ohmic 2:1 VSWR,  $Z_0 = 50 \Omega$  is 50 %.
- The auxiliary PAs are small!
- The PUF for 2:1 VSWR with supply adjustment is also 50 % (G. D. Singh, et al., TMTT 2021).







- The power extracted from the main and auxiliary PAs.
- Main stage static active load adjustment.









## **Simulation Results**











## Measurement Setup









#### Measurement Results









#### Measurement Results





All blue curves reach the output power target!

Load changes in 45° phase steps on the 2:1 VSWR circle





#### Conclusion



- Proposed an active load adjustment technique to recover the PA performance due to load mismatch
- Extracts maximum output power and efficiency from the main PA
- No supply voltage (VDD) adjustment is required. Only active devices.
- Demonstrated output power and efficiency enhancement on the 2:1 VSWR circle







## Thank you very much for your attention!

**Questions?** 

**Comments?** 





Gagan Deep Singh g.d.singh@tudelft.nl

http://elca.tudelft.nl/



