

Tu3D-5

Design of Highly-Efficient Dual-Band GaN HEMT Power Amplifier With Dual-Class E/F-1 Operation

Dang-An Nguyen, Gia Thang Bui, Chulhun Seo
Department of Information and Communication Convergence,
Soongsil University, South Korea

Outline

- Motivation
- Proposed Structure and Design
- Verification Results
- Conclusion

- Wireless communication spectra the sub-6 GHz
 - scattering widely, best compromise between capacity and coverage

Sub-6-GHz frequency bands for 3G, 4G LTE, and 5G NR [1]

- Multi-band mode for RF transmitters
 - reconfigurable and highly-integrated solution, low cost.

- RF Power Amplifier (PA) the sub-6 GHz
 - most expensive, challenging
 - performance matrices: drain efficiency (DE), power-added efficiency
 (PAE), output power, linearity, and size
 - high DE/PAE: priority in design
- High-PAE PA
 - switch-mode PAs: class D, class E
 - harmonic-tuned PAs: class J, class F/inverse class F (class F-1)

 X_o : odd harmonic reactance X_e : even harmonic reactance

Generic PA structure and class theoretical classification based on harmonic impedance [2]

- Class F/F-1: even/odd harmonics are low, odd/even harmonics are high
- Class E: all harmonic reactances are comparable in magnitude to the fundamental-frequency load resistance

Comparison between class E and class F/F-1 modes [3]

Class E	Class F/F-1
High Efficiency (up to 100%)	High Efficiency (up to 100 %)
Harmonic requirements are more forgiving→ simple load network	Harmonic requirements are more rigorous→ complicated load network
Subject to operating frequency limitation	No operating frequency limitation

 Dual-band (DB) operation: class-E for low band, class F-1 for high band → high PAE and uncomplicated design.

- ✓ HTN: HarmonicTermination Network
- ✓ DB: Dual-band
- ✓ FOMN: Fundamental Output Matching Network
- ✓ FIMN: Fundamental Input Matching Network
- ✓ DB-BN: Dual-Band Biasing Network

Proposed structure for dual-class E/F-1 operation

- Harmonic Control: Inverse class F HTN, class-E HTN.
- Fundamental Matching: DB-FOMN, DB-FIMN
- DC Biasing: DB-BN

Detail load structure for dual-class E/F-1 operation

- Implementation based on transmission lines
- Active device: packaged transistor

Inverse class F HTN

- open circuit for $2f_2$, short circuit for $3f_2$ at *I*-Gen plane
- considering effects of parasitic network, isolated with others
- DB-FOMN: DB matching to 50 Ω
- DB-BN: shorted at DC and open at fundamental frequencies
- Class-E HTN
 - as a 50 Ω 50 Ω transformer at the fundamentals
 - Class-E harmonic termination at f_1 , does not affect to others

Inverse Class-F HTN [4]

- Including two shunt stubs in each of two arms
- Based on tuning mechanism

• DB-FOMN [5]

- matching fundamental optimal impedance Z_{L1} to 50 Ω

DB-BN [6]

 $-Z_B$: zero at DC, infinite at f_1 , f_2

Class-E HTN [5]

• Including a dual-band resonator and a 50 Ω tuning transmission line

$$Z_{14} = \frac{1}{4f_0 C_0} \sec^2(\frac{\pi}{2} \times \frac{f_2 - f_1}{f_2 + f_1})$$
$$Z_{15} = \frac{1}{4f_0 C_0} \csc^2(\frac{\pi}{2} \times \frac{f_2 - f_1}{f_2 + f_1}),$$

• Adding T_{13} does not influence the fundamental impedance, harmonics of f_1 are modified with its length

- Design Process Three Steps
 - Step 1: first realizing class F-1 HTN, yielding class F-1 operation at the *I*-generation plane.
 - <u>Step 2</u>: then designing DB-FOMN, correctly matching fundamental optimal impedance to 50 Ω . At this step, adding a DB-BN which does not affect to the matching performance.
 - Step 3: class E HTN follows the DB-FOMN, acting as a 50 Ω 50 Ω transformer and only influencing to the harmonics of f_1 .

- Active Device: 5-W Cree transistor CGH40006P
- Operating Frequency: f_1 =1.4 GHz, f_2 =3.5 GHz
- Biasing Voltage: V_{GS} =-3.2 V, V_{DS} =28 V

TLIN	T_0	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9
$Z(\Omega)$	90	90	120	120	90	120	120	90	90	126.4
θ (°)	43.3	45	45	45	54.1	30	30	10	60	24.6
f (GHz)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	1.4
TLIN	T_{10}	T_{11}	T_{12}	T_{13}	T_{14}	T_{15}	T_{B1}	T_{B2}	T_{B3}	T_{B4}
$Z(\Omega)$	75.7	106.3	115.5	50	41.7	65.6	90	90	90	
θ (°)	50.2	51.2	56.4	19	90	90	90	90	86	90
- ()										

Extracted TLIN parameters for dual-class E/F-1 operation

Simulated PAE contours and location of $Z_{L,Pkg}$ at $2f_1$ and $3f_1$

- 2nd and 3rd harmonics are located at optimal regions
- Efficient class-E operation at f_1

Simulated location of $Z_{L,Drain}$ at $2f_2$ and $3f_2$

- Second harmonic spreads near the open-circuit point while third harmonic resides close to the short-circuit region.
- Reliable class F-1 operation at f_2 .

Simulated fundamental impedance location of Z_{L1} at f_1 and f_2

 Good agreement between load-pull and circuit simulations.

Simulated intrinsic drain waveforms of voltage and current at (a) f_1 and (b) f_2

- Class E waveforms at f_1 .
- Inverse Class F waveforms at f_2 .

Photograph of the fabricated prototype on Taconic TLY-5 substrate $(\varepsilon_r=2.2 \text{ and } \tan\delta=0.0009)$

- Measured peak efficiency: 79.2% at 1.37 GHz, 68.5% at 3.48 GHz.
- Output Power: 38.3 dBm at 1.37 GHz, 36.8 dBm at 3.48 GHz

Measured efficiency, PAE, output power, gain versus input power.

 Highest PAE: 77.4% at 24 dBm for 1.37 GHz; and 62.9% at 28 dBm for 3.48 GHz.

Conclusion

- This work presents a high efficiency DB PA with low design complexity
 - Dual-class E/F-1 strategy: class E operation for low band and class
 F-1 operation for high band
 - A novel structure with its design process: realizing the dual-class
 E/F-1 operation
 - Verification: simulation and measurement using a packaged transistor

References

- [1] H. Liu, C. Zhai and K. M. Cheng, "Novel Dual-Band Equal-Cell Doherty Amplifier Design With Extended Power Back-Off Range," *IEEE Trans. Microw. Theory Techn.*, vol. 68, no. 3, pp. 1012-1021, March 2020.
- [2] F. H. Raab, "Class-E, Class-C, and Class-F power amplifiers based upon a finite number of harmonics," *IEEE Trans. Microw. Theory Techn.*, vol. 49, no. 8, pp. 1462-1468, Aug. 2001.
- [3] K. Chen and D. Peroulis, "Design of Highly Efficient Broadband Class-E Power Amplifier Using Synthesized Low-Pass Matching Networks," *IEEE Trans. Microw. Theory Techn.*, vol. 59, no. 12, pp. 3162-3173, Dec. 2011, doi: 10.1109/TMTT.2011.2169080.
- [4] Young Yun Woo, Youngoo Yang and Bumman Kim, "Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers," *IEEE Trans. Microw. Theory Techn.*, vol. 54, no. 5, pp. 1969-1974, May 2006.
- [5] D.-A Nguyen and C. Seo, "A high-efficiency design for 5-W 2.4/5.8 GHz concurrent dual-band class-E power amplifier," Microw. Opt. Technol. Lett., vol. 63, no. 4, pp. 1083–1090, Apr. 2021.
- [6] Q. -F. Cheng, H. -P. Fu, S. -K. Zhu and J. -G. Ma, "Two-stage high-efficiency concurrent dual-band harmonic-tuned power amplifier," *IEEE Trans. Microw. Theory Techn.*, vol. 64, no. 10, pp. 3232-3243, Oct.

Thank you for your attention! Q & A

