

TU4A-1

Statistical Synthesis of Optimal Coupling Matrix for Robotic Automatic Tuning of Microwave Bandpass Filters

Kam Fung Lao¹, Ke-Li Wu¹

¹The Chinese University of Hong Kong, China

Outline

- Introduction
- Statistical Synthesis and Testing Criteria
 - A. Statistical Distribution of Coupling Elements
 - B. V-curves
 - C. Monte-Carlo Analysis
- Verification Example
- Conclusion

Introduction

- Deployment of 5G wireless communication systems
- Tuning of microwave filters
 - -major factor in the production cost
- Enhancing the tuning efficiency in mass production
- Filter synthesis as a statistical problem
- Yield optimization^[1]
 - -requires good physical intuitive initial values

[1] J.W. Bandler and S.H. Chen, "Circuit optimization: the state of the art," IEEE Trans. Microwave Theory Tech., vol. 36, 1988, pp. 424-443.

Introduction

- Mimicking the statistical tuning process of human
- Monte-Carlo optimization
- Statistically optimal Coupling Matrix (CM)
 - -viable physical design
 - -efficient tuning process in mass production
- Infinite number of CMs that meets a given specification
- CM with equi-ripple return loss (RL) [2]
 - -more vulnerable to the tuning error

[2] R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems. New York: Wiley, 2007, ch. 6–8.

Introduction

- Robotic automatic tuning (RAT)
 - -filter model extraction techniques [3]-[5]
 - -mechanic error
 - -extracted CM and target CM^[6]
- Statistically optimal Coupling Matrix
 - –center of "Disneyland"
 - [3] P. Harscher, R. Vahldieck and S. Amari, "Automated filter tuning using generalized low-pass prototype networks and gradient-based parameter extraction," IEEE Trans. Microw. Theory Techn., vol. 49, no. 12, pp.2532-2538, Dec. 2001.
 - [4] G. Macchiarella and M. Santoniccolo, "An Original Technique for Computer-Aided Tuning of Microwave Filters," 31st Eur. Microw. Conf., 2001, pp. 1-4.
 - [5] M. Meng and K.-L. Wu, "An analytical approach to computer-aided diagnosis and tuning of lossy microwave coupled resonator filters," IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3188–3195, Dec. 2009.
 - [6] P. Zhao, K.-L. Wu, "Model-Based Vector-Fitting Method for Circuit Model Extraction of Coupled-Resonator Diplexers", IEEE Trans. Microw. Theory Techn., vol. 64, no. 6, pp. 1787-1797, June 2016.

Statistical Distribution of Coupling Elements

- Statistical Distribution
 - -collect as many CMs as possible
 - -just satisfies the given specification
- Non-linear optimization
 - –emulates the human tuning process
 - -just meets the tuning/design specification
 - -tuning specification vs. acceptance specification

Statistical Distribution of Coupling Elements

Monte-Carlo optimization

-solve: $\min_{x} \max_{i} F_{i}(g(x))$

g(x): insertion and return loss

F(·): objective function

V-curves

Sensitivity analysis of each coupling element

$$-Err = \max_{i} max(g(x) - z, 0)$$

z: design specification

Monte-Carlo Analysis

- Overall sensitivity analysis of a given CM
- Tolerance analysis of microwave filters
- Uniformly distributed random variables
- Estimated yield
 - -acceptance specification

9th-degree filter with 4 transmission zeros (TZs)

Red: Statistically Optimal CM

Black: Equi-Ripple CM

Statistical Distribution

- -5000 optimized samples
- -± 0.05 of the initial values (uniform distribution)
- normal distribution

Statistically Optimal CM

- -optimal value (mean)
- –highest probability density

- Equi-Ripple CM
 - -far away from the optimal
 - not optimal for the ease of tuning

• Equi-Ripple response vs. Optimal response

V-curves

- -zero-error regions
- -relatively gradual slope

- Monte-Carlo simulation
 - -10,000 samples, ± 0.005

Monte-Carlo simulation

Conclusion

- Equi-ripple CM is not statistically optimal
- V-curves and Monte-Carlo analysis give further evidence

Superiority of the statistically synthesized optimal CM

