

TU4A-4

Analysis of a Sensor Based on an Injection-Locked Oscillator Driven by a Chirp Signal

S. Sancho, F. Ramírez, M. Pontón, A. Suárez Universidad de Cantabria, Santander, Spain

Material under test (MUT):

Analysis frequency

Dielectric constant at ω_o :

$$\frac{\varepsilon_r}{\varepsilon_r} = \varepsilon' + j\varepsilon'' = \frac{\varepsilon'}{\varepsilon'} (1 + \tan \delta)$$

Parameters to be detected

Resonator: linear circuit

Injection locked oscillator (ILO) sensor:

$$v(t) = \sum_{k} V_k(t)e^{j(k\omega t + \phi_k(t))}$$

$$V = V_1(t, \boldsymbol{\varepsilon_r}) \longrightarrow$$
 Observation variable

Injection locked oscillator (ILO) sensor:

Estimation:

System equations:

System equations:

Border conditions:

$$\frac{\partial \omega}{\partial \alpha} = 0$$

$$\omega(\phi) - \omega_U = 0$$

$$\omega(\phi \pm \pi) - \omega_L = 0$$

System equations: $u = \{V, \omega, \phi, \varepsilon', \varepsilon''\}$

$$Y(V, \omega, \boldsymbol{\varepsilon_r}) = 0$$

$$\frac{\partial \omega}{\partial \alpha} = 0$$

$$\omega(\phi) - \omega_{II} = 0$$

$$\omega(\phi \pm \pi) - \omega_L = 0$$

$$F(u, \omega_L, \omega_U) = 0$$

$$\omega(\phi) - \omega_U = 0$$

$$\omega(\phi \pm \pi) - \omega_L = 0$$

$$(\varepsilon', \varepsilon'') = f(\omega_L, \omega_U) \Leftrightarrow \det \frac{\partial F(u, \omega_L, \omega_U)}{\partial u} \neq 0$$

Calibration of the Sensing function: $(\varepsilon', \tan \delta) = f(\omega_L, \omega_U)$

1) Detection of $(\omega_L, \omega_U) = g(\varepsilon', \tan \delta)$

2) Obtain $f = g^{-1}$

Injection-locked oscillator based on the NPN bipolar transistor BFP420

Region of interest:

$$\varepsilon' = 1 + x$$
$$\tan \delta = 0.002 + 0.001x$$

Injection source: chirp signal

Injection source: chirp signal

Inner tier: $Y(V, \omega, \mathbf{x}) = 0$

$$Y_V(V - V_o) + Y_\omega \left(\omega_c - \omega_o + \dot{\phi} - j\frac{\dot{V}}{V}\right) + GY_g(\phi) = 0$$

Detection of ω_L and ω_U

Averaging:

Calibration:

$$(\omega_L(\mathbf{x}), \omega_U(\mathbf{x})) = g(\varepsilon'(\mathbf{x}), \tan \delta(\mathbf{x}))$$

$$(\varepsilon'(\mathbf{x}), \tan \delta(\mathbf{x})) = f(\omega_L(\mathbf{x}), \omega_U(\mathbf{x}))$$

Estimation:

Application

x: Concentration of ethanol in water

Capacitive section of the resonator

Prototype built on Rogers 4003C substrate with and without the resin container

Application

x: Concentration of ethanol in water

Estimation of ε' **and** tan δ Calibrated **×** Estimated 60 0.8 -ယ 40 0.6 20 0.4 0.2 20 30 80 40 50 60 70 90 10 Percentage (%)

Summary

- Sensor based on an injection-locked oscillator driven by a chirp signal
- The time interval for which the oscillator gets locked to the injection source depends on the MUT
- This time interval can be detected and used to estimate the MUT

