

TU4A-319-BL207

Geometry Scaling of Microwave Filters Using an Adaptive Homotopy Continuation Method

Anlan Liu¹, Ming Yu^{2,3}

¹Chinese University of Hong Kong, HK, SAR

²Shenzhen Key Laboratory of EM Information, Shenzhen, China

³Southern University of Science and Technology, Shenzhen, China

Outline

- Background
- Geometry scaling of Microwave Filters Using an Adaptive Homotopy Continuation Method
 - Adaptive Homotopy Continuation Method
 - Inverse Model Construction
- Experiment Results and Comparisons
- Conclusion

Microwave Filters

- Components for passing and attenuating signals at specific frequency ranges
- The Filter Design Process

- Follow several steps at different levels
- The optimization is commonly based on full-wave electromagnetic (EM) simulation
 - Accounts for 90% of the total design time

Geometry Scaling

- To redesign filters with the same structure for different required center frequencies and bandwidths
- E.g., a multiplexing network with multiple channels

Human effort

- The synthesis technique for a single filter is wellestablished
- "trial and error" to improve efficiency by skipping steps

Challenges:

- Too much human participation
- Non-linearity can result in failure
- Low efficiency
- Can not be reused

Inverse model can be a promising solution

Inverse model

- Output the physical parameters given the electrical parameters
- Why is the inverse model promising?
 - Be reused to directly give the filter's dimension without repetitive EM simulations
- How to train a reliable inverse model?
 - A high-quality database is needed
 - Homotopy Continuation (HC) can be applied

Homotopy Continuation (HC)

- Divide a problem into a series of intermediate sub-problems
- Each sub-problem is solved from its previous solution
 - A predictor followed by a corrector
- Why is HC applied?
 - More linear and easier to solve
 - The database is built by collecting all the intermediate solutions

An example of HC applications [1]

Adaptive HC Method

1. HC Step Considerations

- Too large: fail to solve the next sub-problem
- Too small: the computational cost increases
- Adaptive HC steps δ^i
 - Adjusted by the responses of physical parameters from the predictor

$$\begin{split} \delta^{i} &= 2 * \delta^{i-1}, if \ C^{i-1} < \varepsilon \\ \delta^{i} &= 0.5 * (\delta^{i-1} + \delta^{i-2}), if \ C^{i-1} \ge \varepsilon \& \ C^{i-2} < \varepsilon \\ \delta^{i} &= \delta^{i-1}, if \ C^{i-1} \ge \varepsilon \& \ C^{i-2} > \varepsilon \end{split}$$

- $BW^{i-1} = Predictor(x)$ is solved as $x = L^{i-1}$, then $BW^i = BW^{i-1} + \delta^i$
- C^{i-1} is the cost function of $Predictor(L^{i-1})$

Adaptive HC Method

- 2. Inclusion of Transmission Zeros (TZs)
 - For the precise control of the response shape
 - Top figure: consider the shift of TZs
 - Bottom figure: the target normal
 TZS are the same as the golden design

Comparisons between target and optimal responses

Inverse Model Construction

Experiment Results

Set up

- A fourth-order coaxial resonator filter
- 9 physical parameters
- 2 TZs
- Golden design at BW = 3%, $f_0 = 1.95$ GHz

Desired BW and f0

The well trained ANN

Physical parameters

Target TZs

Tune if necessary

Experiment Results

Results

- An 8×7 grid is formed as the

Some design variables vary with BW

Three examples of geometry scaling

Experiment Results

Comparisons

- [2]: small steps; more cost on the database construction
- [3]: large steps; more cost on <u>tunings</u>

Comparisons of the required time (Unit: min)

Conclusions

- To perform geometry scaling for multiple desired design specifications automatically and efficiently can be challenging
- Adaptive steps are embedded into HC
- TZs are included in the database
- To generalize this work to other types of filters and other design specifications besides the bandwidth and center frequency

Reference

- [1] G. Diaz-Arango, L. Hernandez-Martinez, A. Sarmiento-Reyes and H. Vazquez-Leal, "Fast and robust homotopy path planning method for mobile robotics," 2016 IEEE Intern. Symposium On Circuits and Systems (ISCAS), Montreal, QC, Canada, 22-25 May. 2016.
- [2] C. Roy and K. Wu, "Homotopy optimization and ANN modeling of millimeterwave SIW ciuciform coupler," *IEEE. Trans. Microw. Theory Techn.*, vol. 70, no. 11, pp. 4751–4764, Nov. 2022.
- [3] S. Koziel and J.W.Bandler, "Low-cost dimension scaling and tuning of microwave filters using response features," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22-27 May. 2016.

