

TU4B-1

Intrinsically Switched Multiplexer Based Reconfigurable Filter MMIC

Charles F. Campbell¹, Deep C. Dumka¹, Ajay S. Bodade¹, Randy D. Kinnison¹, Matthew S. Essar¹, Jeffrey N. Miller¹
¹Qorvo, Richardson, TX, USA

Presentation Outline

- Introduction and Motivation
- Approach
- Design
- Experimental Results
- Conclusions

Introduction and Motivation

- Prevent saturation in high sensitivity wideband digital receivers
 - Not for damage protection
 - Reduction of the strength of potentially saturating external signals
 - Not for the reduction of self interference
- The reduced signal must still be receivable
 - Process must not add significant additional distortion
 - Attempt to maintain a constant dynamic range
- Operate with as much low loss bandwidth as possible
 - Programable notch filter ⇒ Frequency Selective Limiter (FSL)

Introduction and Motivation

Performance Goals

Metric	Goal	Notes
Operating Band	4.0 – 8.5 GHz	
Average IN-Band Loss	< 5dB	No Signal Reduction
Input Signal Level	< 10 dBm	< 2.0 Vpp
Output Signal Level	< -20 dBm	< 63.2 mVpp
Selectivity	> 3:1	Requires 6 Filter Channels
IN-Band IIP3	> 15 dBm	No Signal Reduction
OUT-of-Band IIP3	> 50 dBm	With Signal Reduction
Signal Detection	Integrated	Peak Detection
Automated Control	Closed Loop	Use Microcontroller
DC Power Consumption	< 250 mW	Can't use test equipment

Approach

Architecture – Intrinsically Switched Multiplexer (ISM) [1,2]

6-Channel Multiplexer

[1] A. C. Guyette, "Theory and design of intrinsically switched multiplexers with optimum phase linearity," IEEE Trans. Microw. Theory Techn.

[2] E. J. Naglich and A. C. Guyette, "Frequency Selective Limiters Utilizing Contiguous-Channel Double Multiplexer Topology," IEEE Trans. Microw. Theory Techn.

Approach

- The ISM works for ALL $2^6 = 64$ control states
- System Detect and Control Architecture
- ANT Detector Interferer Present?
- RX Detector Interferer Reduced?
- Flat Detector Frequency Response
- High Directivity Sampling
 - IN-Band: ISM is well matched
 - OUT-of-Band: ISM is Reflective
- Future Work Closed Loop Control

Design

Qorvo's production released PHT09 GaAs PHEMT process utilized

- 90 nm gate length
- Switch FET FOM ≈ 700 GHz
- Vp = -0.6V
- -VBD = 14V
- $-F_T$ / Fmax = 65 GHz / 125GHz
- 3D interconnect Features
 - Under Development

Design

- ISM MMIC is designed to be flipped over a ground plane
 - Grounds are connected with Cu Bumps over Substrate Vias
 - Bond wire RF / DC Interconnects using the backside Hot Vias

Measured Frequency Response of All 64 Filter States

IN / OUT-of-Band and Individual States – Dashed Traces Simulated

Two Channel Bandpass Filter States

Three Channel Bandpass Filter States

Single and Multiple Channel Notch Filter States

Two and Three Channel Notch Filter States

Input 3rd Order Intercept Point for IN-Band and Out-of-Band

Integrated Detection

Conclusions

- The design and results for a 6-channel intrinsically switched multiplexer based filter bank MMIC has been presented
- The design features 64 operational states and integrated sensing
- Applications include closed loop frequency selective limiting and reconfigurable bandpass / notch filters
- This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

