

Miniaturized IPD Filter with Flexibly Controllable Transmission Zeros for 5G Application

Yan Zheng, Hanyu Tian, Yuandan Dong University of Electronic Science and Technology of China, Chengdu, China

Outline

Introduction & Motivation

Filter Configuration & Working Principle

Simualtion & Measurement

Conclusion

IPD: integrated passive device

Introduction & Motivation

On-chip filter in transceivers

- Conventional transceivers with modular filters
 - High cost
 - Large and bulky at low frequency
- **◆** Transceivers with on-chip filters
 - Compact size
 - An attracting solution for high-density and low-cost system integration

Introduction & Motivation

Desired on-chip filter

- ◆ System in Package (SiP) and System-on-a-Chip (SoC) integration possible
- Low dielectric loss and metal loss
- Allows stacking of passive devices that <u>consume area</u> in active circuits

Filter Configuration

Inductors in this work

Technology: GaAs IPD

- Multi-path coupling
 - Horizontal direction
 - Vertical direction
- **♦** Compact structure
 - By winding metal wires in series on metal layers M2 and M3
 - Horizontal overlap between two inductors

Filter Configuration

Filtering unit

Structure of the filtering unit

Equivalent circuit model

- ◆ Reduced chip size
 - <u>Using transformer</u> reduces the number of total inductors require
 - A capacitor is embedded inside a inductor
 - Non-inverting coupling method was used

Working principle

Even- and odd-mode features

Even- and odd-mode equivalent circuits

$$Y_{in,e} = j\omega C_{1} + \frac{1}{j\omega L_{1_{-}e}}$$

$$Y_{in,o} = j\omega (C_{1} + 2C_{2}) + \frac{1}{j\omega L_{1_{-}o}}$$

$$L_{1_{-}e} = L + K_{Mi\&j}\sqrt{L_{i}L_{j}}$$

$$L_{1_{-}o} = L - K_{Mi\&j}\sqrt{L_{i}L_{j}}$$

$$K = \frac{Im[Y_{in,e(\omega_{0})} - Y_{in,o(\omega_{0})}]}{\partial Im\left[\frac{(Y_{in,e} + Y_{in,o})}{2}\right]} | \omega = \omega_{0}$$

$$\frac{1}{j\omega(L + K_{Mi\&j}L)} = 2j\omega C_{2} + \frac{1}{j\omega(L - K_{Mi\&j}L)}$$

Working principle

Response characteristics of the filtering unit

- **♦** Flexible transmission zero (TZ)
 - Controlled by the <u>series capacitance and the strength of the coupling</u>

Filter Configuration

Third-order bandpass filter

Perspective view of the structure

Top view of the structure

Technology: GaAs IPD

♦ Structural features

- L₆ is drawn in a <u>particular configuration</u> to facilitate coupling with resonator 1 and 3
- L_4 and L_8 are two symmetrical inductors about the origin
- The inductors L_4 and L_8 are still arranged in series as L_{41} and L_{42} , L_{81} and L_{82} , respectively
- Capacitor C₅ is embedded inside a inductor for <u>compact size</u>

Working principle

Equivalent circuit

Inverting coupling Non-inverting coupling

With different coupling

Bandstop resonator

In resonator format

- Equivalent circuit with different coupling
 - The inductive coupling between inductors L_4 and L_6 can be characterized by the joint action of $K_{41\&61}$, $K_{42\&61}$ and $K_{42\&62}$
 - This design employs <u>two types of coupling</u> aiming for size reduction and easier control of the coupling
- Equivalent circuit in resonator format
 - The combination of C_5 and C_7 serves a series resonator
 - Inductor L₆ is part of both <u>bandpass and</u> <u>bandstop resonators</u>

Simulation & Measurement

- ♦ Insertion Loss:1.63 dB
- ◆ Size: 0.85mm*0.45mm

- ◆ Harmonic Suppression: 6.34 f₀
- ◆ 3-dB fractional bandwidth:43.3%
- Measured via on-wafer G-S-G probes, using a vector network analyser (VNA)

Conclusion

- ◆ The filtering devices using non-inverting coupling and inverting coupling theory was analyzed.
- ◆ Special inductor winding method for <u>compact size</u>, <u>high-quality factor</u> <u>and easier control of the coupling</u> is used.
- Equivalent circuits from different perspectives (<u>coupling types and</u> <u>resonator format</u>) are used to analyze the structure.
- ◆ The proposed <u>N77 band filter</u> exhibits the merits of <u>large bandwidth</u>, size reduction and wide band.

Thank You! Questions?

Further discussion is welcome at: iszhengyan@163.com ydong@uestc.edu.cn

