

Tu4D-3

Widen Linearization Angle of Beamforming Arrays With Semi-Partitioned Digital Predistortion

Qing Luo, Anding Zhu

RF & Microwave Research Group School of Electrical, Electronic & Communications Engineering University College Dublin, Ireland qing.luo@ucd.ie

Outline

- ☐ Introduction
- ☐ Semi-partitioned DPD
- ☐ 2-target model-reference extraction
 - (iterative learning control)
- ☐ DPD performance
- ☐ Conclusion

Massive MIMO transmission

- Nonlinearity still exists
- DPD system cost/power/volume consumption

√ Beam-Oriented Structure:

Different phase-weighted combination:

$$y_n = Y_n[x] = \sum_k \{R_k[x]e^{-j\pi\sin((\theta_n - \theta_0)\pi/180)(k-1)}\}$$

X Linearization Angle Problem:

$$\begin{cases} y_0 = Y_0[x] = z \\ y_1 = Y_1[x] = z \end{cases}$$

Linearization Angle Widened DPD (LAW)

? Two-target DPD exists

√ Two DPD outputs (two variables)

$$\begin{cases} y_1 = Y_1[x_1] + \bar{Y}_1[x_2] = z \\ y_2 = Y_2[x_1] + \bar{Y}_2[x_2] = z \end{cases}$$

V Two different nonlinearity radiations

$$\bar{Y}_n \neq Y_n$$
 (Nonsingular: row full rank)

Conventional LAW DPD

X Inserting auxiliary phase shift network

Selecting parameters

Hybrid beamforming incompatible

Conventional LAW DPD

X DPD extraction

Offline indirect learning
Dual-input DPD models
Two uncorrelated signals

Semi-Partitioned DPD

DPD signal process is split into two branches

- $m{V}$ Two different nonlinearity radiations ($ar{Y}_n
 eq Y_n$), no auxiliary parameters
- **V** Adaptive to hybrid beamforming naturally

2-Target Model-Reference Extraction

Model-reference structure:

- DPD coefficients online updating
- Using single-input model

$$\mathbf{c}^{(i+1)} = \mathbf{c}^{(i)} + \gamma (\mathbf{F}(\mathbf{z})^H \mathbf{F}(\mathbf{z}))^{-1} \mathbf{F}(\mathbf{z})^H \mathbf{e}^{(i)T}$$

Linear ILC-DPD (nonparametric)

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} + \gamma \mathbf{e}^{(i)}$$

Question:

How to construct the proper error signal for each DPD block?

2-Target Model-Reference Extraction

Steps

- Estimate Linear transmission matrix T
- Calculating error signals with OTA post-processing
- Updating DPD coefficients

V Convergence has been proven

DPD Performance

Simulation comparisons

LAW-DPD

V Linearization angle widened

Semi-Partitioned DPD

DPD Performance

Experiment

- 2×2 hybrid
- Non-ideal calibration

- $V 10^{\circ} \rightarrow 20^{\circ} (< -54 \text{ dBc})$
- **V** Gain pattern is not affected

Conclusion

Advantages:

- 1. 2-target DPD structure is simplified
- 2. DPD extraction complexity is reduced significantly
- 3. Online DPD is possible
- 4. Adaptive to hybrid beamforming
- 5. The technique can be extended to other multi-target scenarios

