

TU04D-5

Incremental DPD Linearization for Mobile Terminals with Non-Flat Frequency Response in Dynamic Bandwidth Re-Allocation Scenarios

W. Li¹, Y. Guo², G. Montoro¹, and P. L. Gilabert¹

¹Universitat Politècnica de Catalunya, Barcelona, Spain

²Huawei Hisilicon, Shanghai, China

Components and Systems for **Communications** Research Group

Outline

Introduction

- Dynamic RB Allocation in 5G NR Applications.
- RF PA under Non-Flat Frequency Response.
- Incremental Bandwidth (IBW) Linearization
 - Incremental Bandwidth DPD Model
 - Constrained DOMP for IBW GMP Basis Selection
- Experimental Setup and Results
- Conclusion

Introduction

- 5G NR RB Reallocation Scenario: Dynamic RB location & number, assuming fixed Fc.
- For dynamic RB location (i.e., frequency), we propose the FD DPD (presented in RWW 2023).
- For dynamic RB number (i.e., bandwidth), we propose the IBW DPD (this work).

Dynamic Frequency

- For narrow-band signals.
- Less memory effects.
- FD nonlinearity.
- Coefficient interpolatable. (e.g., FDMP/FDP model)

IBW & FD

Dynamic Bandwidth

- Simple model for narrow-band.
- Introduce more basis for wide-band.
- Complexity for implementation.
- Prefer an incremental model.

Introduction

Mobile-terminal PAs usually work under large load-mismatched conditions.

Load-mismatched Creation

Consequence of different bandwidth

Incremental Bandwidth DPD Model

u[n]

 N_{RB}

Objective: Make the DPD model incremental with bandwidth,

- by appending new basis,
- with fixed coefficients.

Assuming: the additive distortion is orthogonal to the previous basis functions.

Based on GMP:
$$d_i[n] = \sum_{k_i=1}^{K_i} w_{k_i} u[n- au_{k_i}] \left|u[n- au_{k_i}-\sigma_{k_i}]
ight|^{p_{k_i}}$$

Predistortion Signal: $x[n] = u[n] - \sum_{i=1}^{n} d_i[n]$

Narrow-band error: $e_1[n] = u[n] - y[n]$

IBW error: $e_i[n] = u[n] - y[n] - \sum_{j=1}^{i-1} d_j[n]; \ (i > 1)$

IBW Coefficients: $\boldsymbol{w}_i^{k+1} = \boldsymbol{w}_i^k + \mu (\boldsymbol{U}_i^H \boldsymbol{U}_i)^{-1} \boldsymbol{U}_i^H \boldsymbol{e}_i$

GMP 1 $(N_{RB} <= b_1)$

IBW GMP

DOMP for IBW GMP Basis Selection

- Define I bandwidth configurations and the boundaries. (e.g., $\{10, 40, 80, 162, 273\}$)
- Selects basis incrementally with BW by DOMP.
- Allowing reselection to retrain significant basis.

```
Algorithm 1 IBW Constrained DOMP
 1: procedure IBWDOMP(M, U, y)
           M^* \leftarrow \{\}, i \leftarrow 1, e \leftarrow y, w \leftarrow ()
           while i \leq I do
                 M_i \leftarrow \{\}, e_i \leftarrow e_{\{i\}}, Z_i \leftarrow U_{\{i\}}
                      j^* \leftarrow \operatorname{pursuit}(M^*, M_i, M, \varphi)
                      M_i \leftarrow M_i \cup M^{\left\{j^*
ight\}}
                      \sigma \leftarrow {Z_i}^H {Z_i}
                      oldsymbol{Z}_i \leftarrow oldsymbol{Z}_i - oldsymbol{\sigma} \otimes oldsymbol{Z}_i^{\{j^*\}}
                      oldsymbol{U}_* \leftarrow oldsymbol{U}_i \left[ oldsymbol{M}_i 
ight]
11:
                      w_i \leftarrow (U_*^H U_*)^{-1} U_*^H y_i
12:
                      e_i \leftarrow \hat{y_i} - U_* \hat{w_i}
13:
                 until stopping criterion is met
14:
                 M^* \leftarrow M^* \cup M_i
15:
16:
                 U_* \leftarrow U[M^*]
                 w \leftarrow (w^T, w_i^T)^T
17:
                                                  <- IBW residual error
18:
                e \leftarrow y - U_* w
                M \leftarrow M_{\notin M_i}
                                                  ⊳ only if not allowing re-selection
19:
                 i \leftarrow i + 1
20:
21:
           end while
           return M^*
23: end procedure
```

```
Algorithm 2 Greedy selection with memory preference
 1: procedure PURSUIT(M^*, M_i, M, \varphi)
           P^* \leftarrow M^{*\{	au,\sigma\}} \cup M_i^{\{	au,\sigma\}}.P \leftarrow M^{\{	au,\sigma\}}
          arphi_s, s_{\mathrm{id}} \xleftarrow{orall arphi_n > \gamma} \mathrm{sort}_{\mathrm{desc}}(arphi_n) <- Score threshold
          if P_s \cap P^* \neq \emptyset then <- Memory preference
               j \leftarrow 0
               repeat
                    j \leftarrow j + 1
                    j^* \leftarrow s_{id}(j)
10:
               until P_s^{\{j\}} \in P^*
11:
12:
          else
13:
               j^* \leftarrow s_{id}(1)
14:
          end if
          return i^*
16: end procedure
```


† Clues for defining the IBW boundaries.

st The $m{i}$ here represents different BW

DOMP for IBW GMP Basis Selection

- Define I bandwidth configurations and the boundaries. (e.g., {10, 40, 80, 162, 273})
- Selects basis incrementally with BW by DOMP.
- Allowing reselection to retrain significant basis.

```
Algorithm 1 IBW Constrained DOMP
 1: procedure IBWDOMP(M, U, y)
           M^* \leftarrow \{\}, i \leftarrow 1, e \leftarrow y, w \leftarrow ()
           while i \leq I do
                 M_i \leftarrow \{\}, e_i \leftarrow e_{\{i\}}, Z_i \leftarrow U_{\{i\}}
                      j^* \leftarrow \operatorname{pursuit}(M^*, M_i, M, \varphi)
                      M_i \leftarrow M_i \cup M^{\left\{j^*\right\}}
                      \sigma \leftarrow {Z_i}^H {Z_i}
                      oldsymbol{Z}_i \leftarrow oldsymbol{Z}_i - oldsymbol{\sigma} \otimes oldsymbol{Z}_i^{\left\{j^*
ight\}}
                      oldsymbol{U}_* \leftarrow oldsymbol{U}_i \left[ oldsymbol{M}_i 
ight]
                       w_i \leftarrow (U_*^H U_*)^{-1} U_*^H y_i
12:
                      e_i \leftarrow \hat{y_i} - U_* \hat{w_i}
13:
                 until stopping criterion is met
14:
                 M^* \leftarrow M^* \cup M_i
15:
16:
                 U_* \leftarrow U[M^*]
                 w \leftarrow (w^T, w_i^T)^T
17:
                                                  <- IBW residual error
18:
                e \leftarrow y - U_* w
                 M \leftarrow M_{\notin M_i}
                                                   ⊳ only if not allowing re-selection
19:
                 i \leftarrow i + 1
20:
           end while
21:
           return M^*
23: end procedure
```

```
Algorithm 2 Greedy selection with memory preference
 1: procedure PURSUIT(M^*, M_i, M, \varphi)
           P^* \leftarrow M^{*\{	au,\sigma\}} \cup M_i^{\{	au,\sigma\}}.P \leftarrow M^{\{	au,\sigma\}}
          arphi_s, s_{\mathrm{id}} \xleftarrow{orall arphi_n > \gamma} \mathrm{sort}_{\mathrm{desc}}(arphi_n) <- Score threshold
          if P_s \cap P^* \neq \emptyset then <- Memory preference
               j \leftarrow 0
               repeat
                    j \leftarrow j + 1
                    j^* \leftarrow s_{id}(j)
10:
               until P_s^{\{j\}} \in P^*
11:
12:
          else
13:
               j^* \leftarrow s_{id}(1)
14:
          end if
          return i^*
16: end procedure
```


^{*} The *i* here represents different BW

DOMP for IBW GMP Basis Selection

Here shows the modeling results by the IBW DOMP.

Experimental Setup

- The PA DUT is a SoC solution for handset provided by Huawei Hisilicon.
- Variable attenuator controls the power of reflected wave to have a desired VSWR.
- Phase shifter controls the phase of the reflected wave.

Experimental Results

$$N_{
m RB,train} = \{5, 30, 70, 148, 273\}$$

$$B = \{10, 40, 80, 162, 273\}$$

Experimental Results

- Performance can be improved by using more coefficients for higher bandwidth.
- In the following test, we fix the coefficients for the first 2 configurations ({3, 9} Coeffs.).
- For the 3rd, 4th and 5th configurations, we use different number of coefficients.

Summary

- We presented the IBW DPD model.
- The constrained DOMP for IBW GMP basis selection:
 - To maximize the orthogonality between the basis and the IBW residual error.
 - Flexible to trade-off the number of basis for linearization performance.
- Tested under un-matched condition and different bandwidth.
 - The IBW DPD can work for the whole 100 MHz channel.
 - It can pass the robustness test with different signals.

Future work:

Combine FD and IBW to support both dynamic frequency and bandwidth.

Acknowledgement

MICINN and FEDER under project PID2020-113832RB-C21.

Generalitat de Catalunya Grant 2021-FI-B-137

Huawei Technologies from July 2020 to Jan 2023

Thank you.

