

We1A-5

We1A-5

Investigation of Heavy-Ion Induced Single Event Effects for GaAs and GaN-based RF Amplifiers in Space Applications

Jan Budroweit

German Aerospace Center (DLR)

Outline

- Space Environment and Radiation Effects
- Devices Under Test
- Test Setup
- Test Results
- Conclusion

Space Environment

- Environmental conditions
 - Mechanical stress
 - Vacuum
 - Thermal issues
 - Outgassing
- Radiation
 - X-Ray
 - Gamma-Rays
 - Particles
 - Protons
 - Heavy lons
- Radiation sources
 - Galactic cosmic rays (GCR)
 - Solar radiation
 - Radiation belts
 - South Atlantic anomaly

Radiation Effects (1)

- Types of radiation effects
 - lonizing dose effects (TID)
 - Cumulative effect
 - Generation, transport and trapping of holes in the insulation in MOS and bipolar device
 - Drift of parametric (e.g. supply current or output voltage)

Radiation Effects (2)

- Single event effects (SEE)
 - Particle interaction with matter
 - Destructive effects
 - Single event latchup (SEL)
 - Single event burnout (SEB)
 - ___
 - Non-Destructive effects
 - Single event upset (SEU)
 - Single event transient (SET)
 - Single event functional interrupt (SEFI)
 - ...
- Displacement damages (DD)

a) Onset event of an ion particle

(b) Onset event of a proton particle

(c) Prompt charge coltion

(d) Diffusion charge colection

Devices Under Test

HMC788A

- 0.01 10 GHz GaAs pHEMT gain block
- 14 dB gain
- Single 5 VDC supply voltage
- Darlington pair amplifier
- Internally matched to 50 Ohms

INTERFACE SCHEMATICS

Figure 3. RF_{IN}, RF_{OUT} Interface Schematic

Devices Under Test

HMC8410

- 0.01 10 GHz GaAs low noise amplifier
- 19.5 db gain
- 5 VDC Drain Supply voltage
- Negative bias voltage required
- Internally matched to 50 Ohms

Interface schematics

Devices Under Test

HMC1087

- 2 20 GHz GaN power amplifier
- 8 W RF output
- 11dB (small signal) and 5.5 dB gain
- 28 VDC drain supply voltage
- Negative bias voltage required
- Internally matched to 50 Ohms
- Consist of 10 FET structures that are parallel organized and forms a traveling wave amplifier

Pin Number	Function	Description	Interface Schematic
1	Vgg	Gate Control Voltage.	RFIN O VGG O VV
2, 4, 5, 7, 9, 10	NC	These pins are not connected internally, however all data shown was measured with these pins connected to RF/DC ground externally.	
3	RFIN	This pad is DC coupled and is matched to 50 Ohms. External blocking capacitor is required.	RFIN O STATE OF THE STATE OF TH
6	Vdd	Drain bias.	RFOUT
8	RFOUT	This pad is DC coupled and is matched to 50 Ohms. External blocking capacitor is required.	RFOUT

Test Setup

Test Setup

- SDR-driven test setup
- Current probes to SET detection on power supply (drain and gate)
- Oscilloscope to detect fast transients on the RF output (not captured by SDR)
- Fully automated setup
- DUTs operated at 4 GHz RF input (sinewave tone)
- DUTs operated close to saturation
- Nominal and max. supply voltages applied
- Two samples each tested

Test Results

Test Results

- All DUTs remain nominal under radiation
- No destructive failures observed
- Even at maximum rating the DUTs did not failed
- Likely that the rating conditions are beyond actual FETs ratings
- Only once, a SET on the supply voltage (drain)
 of the HMC1087 was observed

Conclusion

- Successfully tested three different RF amplifier for Single Event Effects under Heavy-Ion irradiation
- Use of an (partially) SDR-based test setup
- Only one sample showed a single transient at its supply voltage input (drain)
- No destructive events observed at all tested DUTs and samples under nominal and max. rating conditions
- Likely that the FETs are capable to handle higher drain voltages

Thank you for your attention

German Aerospace Center (DLR)

Institute of Space Systems | Avionics Systems Department | Robert-Hooke-Str. 7 | 28359 Bremen

Dr.-Ing. Jan Budroweit

Phone: +49 421 24420-1297 | Telefax +49 421 24420-1120 | <u>jan.budroweit@dlr.de</u> <u>www.dlr.de/irs</u>