









#### We1A-6

# Radiometric Noise Characterization of the 183-664 GHz Front-End Receivers for the MetOp-SG Ice Cloud Imager instrument – prospects for future missions

- B. Thomas<sup>1</sup>, G. Sonnabend<sup>1</sup>, N. Wehres<sup>1</sup>, M. Brandt<sup>1</sup>, M. Trasatti<sup>1</sup>, A. Andrés-Beivide<sup>2</sup>, M. Bergada<sup>2</sup>, J. Martinez<sup>2</sup>, P. Robustillo<sup>3</sup>, M. Gotsmann<sup>3</sup>, U. Klein<sup>4</sup>
- <sup>1</sup> Radiometer Physics GmbH, Germany, <sup>2</sup> Airbus DS Space Systems España, Spain, <sup>3</sup> Airbus DS GmbH, Germany, <sup>4</sup> ESTEC, European Space Agency, The Netherlands







#### **Outline**



- Introduction MetOp-SG
- The ICI instrument
- 183-664 GHz receivers architecture
- 183-664 GHz receivers test results
- Prospects for future missions
- Conclusion





#### Introduction



- MetOp-SG is part of EUMETSAT Polar System (EPS)
- Goal: provide weather observation continuity for 2025-2045
- two series of satellites (A&B) launched in pairs every 8.5 years
- various microwave instruments (MWS, MWI, ICI)









### The ICI instrument



- Conical scanning radiometer covering 183 to 664 GHz
- The field-of-view has a constant nadir angle of 65°
- Lower frequency channels for water vapor profiling
- Higher frequency channels for high altitude ice clouds









## 183-664 GHz receivers architecture



- 7x heterodyne receiver channels operating at 5x frequencies (183, 243, 325, 448 and 664 GHz),
- two of them are dual-polarized (243 GHz, 664 GHz)
- Radiator shield regulates receivers temperature at 28°C
- Total mass: ~8 kg, DC power consumption: ~19W









## 183-664 GHz Gain response tests



- Gain and sideband ratio measured with novel UOSM method (R&S)
- Gain / flatness depend mainly on mixer + LNA matching / tuning
- Sideband ratio is generally compliant to the +/-1dB requirement











#### 183-664 GHz Allan variance results



- Short term gain stability pending on the GaAs technology used
- 183 GHz channel uses MMIC based InGaAs mHEMT RF LNA
- 243-664 GHz channels use discrete GaAs Schottky diode mixers









## ICI receivers summary performances



| PFM Channels                                        | 183 GHz                    | 243 GHz                    | 325 GHz                   | 448 GHz                   | 664 GHz              |
|-----------------------------------------------------|----------------------------|----------------------------|---------------------------|---------------------------|----------------------|
| Frequency stability (MHz)                           | -12.2                      | -0.7                       | 0.0                       | 0.8                       | <6.5                 |
| Rx NF (dB)                                          | 5.0                        | 5.4                        | 7.4                       | 7.2                       | 8.6                  |
| Rx Gain (dB)                                        | 30.1                       | 18.6                       | 17                        | 16.8                      | 16.4                 |
| Gain flatness (dB)                                  | 1.1                        | 1.4                        | 1.3                       | 1.7                       | 1.5                  |
| Short Term Gain Stability 1.10 <sup>-4</sup> (dB)   | 4.6                        | 2.3                        | 2.6                       | 2.7                       | 3.2                  |
| Sideband balance average (dB)                       | <0.23                      | 0.31                       | <0.30                     | <0.20                     | 0.17                 |
|                                                     |                            |                            |                           |                           |                      |
| FM2 Channels                                        | 183 GHz                    | 243 GHz                    | 325 GHz                   | 448 GHz                   | 664 GHz              |
| FM2 Channels  Frequency stability (MHz)             | 183 GHz<br>-2.2            | 243 GHz<br>-5.1            | 325 GHz<br>0.0            | 448 GHz<br>0.5            | 664 GHz<br><3.6      |
|                                                     |                            |                            |                           |                           |                      |
| Frequency stability (MHz)                           | -2.2                       | -5.1                       | 0.0                       | 0.5                       | <3.6                 |
| Frequency stability (MHz)  Rx NF (dB)               | -2.2<br><b>5.1</b>         | -5.1<br><b>5.3</b>         | 0.0<br><b>7.2</b>         | 0.5<br><b>7.7</b>         | <3.6<br><b>9.1</b>   |
| Frequency stability (MHz)  Rx NF (dB)  Rx Gain (dB) | -2.2<br><b>5.1</b><br>30.6 | -5.1<br><b>5.3</b><br>18.2 | 0.0<br><b>7.2</b><br>17.5 | 0.5<br><b>7.7</b><br>17.9 | <3.6 <b>9.1</b> 16.1 |









## **Prospects for future missions**



- Strong interest to simplify and integrate radiometer payloads
- Allow for integration onto smaller platforms to reduce costs
- Some key technologies need further developments:
  - Low Noise Amplifiers up to 664 GHz with similar noise performance
  - Waveguide based calibration systems with similar accuracy
  - Very compact antenna scan mechanism or beam forming arrays
  - Receiver-on-a-chip type integrated architectures with good local oscillator and 1/f noise performance
  - Direct detection receivers with accurate filtering technology





#### Conclusion



- MetOp-SG ICI receivers will allow observations over 2025-2045
- Instrument architecture inherited from previous MetOp program
- State-of-the-art performance achieved for 183-664 GHz Schotty and MMIC based receivers
- New developments are on-going to prepare for the next generation of remote sensing passive instruments
- Smallsat missions such as TEMPEST-D and TROPICS are paving the way for New Space missions.





## Thank you



