

We1B-2

Integrated Silicon Lens-Antenna based on a Top-Hat Leaky-Wave feed for Quasi-Optical Power Distribution at THz Frequencies

M. Alonso-delPino^{#1}, S. Bosma[#], C. Jung-Kubiak^{\$}, J. Bueno[#], G. Chattopadhyay^{\$} and N. Llombart[#]

*Delft University of Technology, The Netherlands

*Jet Propulsion Laboratory, California Institute of Technology, USA

MIS Heterodyne Instrument Requirements at **Submillimeter Wavelengths**

Opto-mechanical reflectors

- Bulky
- Slow
- Power consumption

- High-Gain (50 dBi)
- Bandwidth > 25 %
- Steerable ($\pm 25^{\circ}$)
- **Compact Antennas** for Small-Sat **Platforms**

High Gain via Scanning Lens Phased Array

Connecting Minds. Exchanging Ideas.

- → Low profile antenna with few active elements
- → Facilitates integration, reduces thermal problems

M. Alonso-delPino, S. Bosma, C. Jung-Kubiak, G. Chattopadhyay and N. Llombart, "Wideband Multimode Leaky-Wave Feed for Scanning Lens-Phased Array at Submillimeter Wavelengths," in *IEEE TTST*, March 2021

Lens Feed Requirement

Low GLL \rightarrow *Uniform Aperture* \rightarrow Top Hat Lens Feed

Multi-Mode LW Antenna at 550GHz

Multi-mode Leaky Wave Feed

M. Alonso-delPino, S. Bosma, C. Jung-Kubiak, G. Chattopadhyay and N. Llombart, "Wideband Multimode Leaky-Wave Feed for Scanning Lens-Phased Array at Submillimeter Wavelengths," in *IEEE TTST*, March 2021

Demonstration of Embedded Element Pattern

Power Distribution of Heterodyne Instrument at

SAN DIEGO2023

Submillimeter Wavelengths

@ 550 GHz losses are around $0.2dB/\lambda$ [1]for $\sigma=3.5e6$

- Not scalable for large number of pixels

[1] M. Alonso-del Pino, et al "Micromachining for Advanced Terahertz: Interconnects and Packaging Techniques at Terahertz Frequencies," in *IEEE Microwave Magazine*, vol. 21, no. 1, pp. 18-34, Jan. 2020, doi: 10.1109/MMM.2019.2945157.

QO Power Distribution

Phase gratings

1.4 THz Grating 1 to 8 beams

- ⊗ Narrow band (<5% bandwidth)</p>
- Not scalable for large number of pixels

B. Mirzaei, et.al., "Efficiency of multi-beam Fourier phase gratings at 1.4 THz," Opt. Express 25, 6581-6588 (2017)

Proposed QO Coupling Architecture For arrays

- Wide Bandwidth
- © Low Loss
- Scalable for large number of pixels

IMS Lens Transmit Arrays for Submillimeter-Wave

Instruments

Scanning Lens Phased Arrays

Focal Plane Arrays

A 550GHz source of 30mW[2] can feed around:

- 15 Schottky mixers
- >1000 SIS mixers

[1] S. Rahiminejad, M. Alonso-delPino, T. Reck, A. Peralta, R. Lin, C. Jung-Kubiak, G. Chattopadhyay, "A Low-Loss Silicon MEMS Phase Shifter Operating in the 550-GHz Band," in IEEE Transactions on Terahertz Science and Technology, vol. 11, no. 5, pp. 477-485, Sept. 2021, doi: 10.1109/TTHZ.2021.3085123.

[2] J. V. Siles, K. B. Cooper, C. Lee, R. H. Lin, G. Chattopadhyay and I. Mehdi, "A New Generation of Room-Temperature Frequency-Multiplied Sources With up to 10× Higher Output Power in the 160-GHz-1.6-THz Range," in IEEE Transactions on Terahertz Science and Technology, vol. 8, no. 6, pp. 596-604, Nov. 2018, doi: 10.1109/TTHZ.2018.2876620.

Connecting Minds. Exchanging Ideas.

IMS Proof of Concept at 550GHz in Silicon

micromachining

Scanning Lens **Phased Array**

Phase shifter array

Lens Array

QO Power Distribution via Lens Antenna

Piezoelectric motor

M. Alonso-delPino, S. Bosma, C. Jung-Kubiak, G. Chattopadhyay and N. Llombart, "Wideband Multimode Leaky-Wave Feed for Scanning Lens-Phased Array at Submillimeter Wavelengths," in IEEE TTST, March 2021

IMS Analysis of the Power distribution into the Connecting Minds. Exchanging Ideas.

 Coupling efficiency from a single lens antenna to the array of waveguides:

$$\eta_P = \frac{1}{P_{in}} \sum_{i=1}^N P_B^i$$

Power received on the lens array element i:

$$P_B^i = \frac{\left| (V_{oc}I)^{(i)} \right|^2}{16P_{rad}}$$

 $\overrightarrow{E}_{i}^{e}$ and $\overrightarrow{E}^{top\ hat}$ obtained using a GO field propagation in the near-field and far-field from [2]

$$(V_{oc}I)^{(i)} = \frac{2}{\zeta_0} \iint_{S^i} \overrightarrow{E}_i^e \cdot \overrightarrow{E}^{QOc} dS$$

[1] M. Arias Campo, D. Blanco, S. Bruni, A. Neto and N. Llombart, "On the Use of Fly's Eye Lenses with Leaky-Wave Feeds for Wideband Communications," in IEEE Transactions on Antennas and Propagation, vol. 68, no. 4, pp. 2480-2493, April 2020, doi: 10.1109/TAP.2019.2952474

[2] H. Zhang, S. O. Dabironezare, G. Carluccio, A. Neto and N. Llombart, "A GO/FO Tool for Analyzing Quasi-Optical Systems in Reception," 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 2019, pp. 1-2, doi: 10.1109/IRMMW-THz.2019.8873950.

IMS Optimization of the Power distribution

into the Array

 θ [deg]

IMS Lens Transmit Array Analysis

Connecting Minds. Exchanging Ideas.

$$P_{rad}^{i} = (V_{OC}I)_{i}$$

-10

$$\vec{E}^{array} = \sum_{i=1}^{7} \vec{E}_{i}^{e} \cdot (V_{oc}I)_{i}$$

Aperture efficiency of the lens phased array:

$$\eta_a = \frac{1}{P_{pw}} \frac{\left| (V_{oc}I)_{array} \right|^2}{16 \sum_{i=1}^{N} P_{rad}^i}$$

$$(V_{oc}I)_{array} = \frac{2}{\zeta_0} \iint_{S_a} \vec{E}^{array} \cdot \vec{E}^{pw} dS$$

Lens Transmit Array Radiation Pattern

-0.005

IMS Lens Transmit Array Performance

 Aperture Efficiency of the lens transmit array:

$$\eta_{TA} = \eta_P \cdot \eta_a \cdot \eta_z$$

IMS Coherent Proof of concept demonstration at The SAN DIEGO2023

450-650GHz

Transmit Phased Array

Quasi-Optical Power Distribution

Back

IMS Q0 Power Distribution Lens Measurements

Connecting Minds. Exchanging Ideas.

Transmit Lens Array Measurements

Freq.

+ VNA

IMS Broadside radiation patterns of the lens

transmit array

* Simulations performed with the analysis aforementioned

IMS Scanned Radiation patterns of the lens

Connecting Minds. Exchanging Ideas.

IMS Scanned Radiation patterns of the lens

transmit-array

MIMS Conclusions

Connecting Minds. Exchanging Ideas.

Transmit Lens Arrays for Broadband THz Power Distribution and Beam-Steering

450GHz - 650GHz 7 Element Phased Array Prototype

36dB directivity
33dB gain
+/-25deg scanning

Excellent agreement between measurements and QO model

Great potential for future sub-mm space instruments based on Focal Plane Arrays & Phased Arrays

We1B-2

Integrated Silicon Lens-Antenna based on a Top-Hat Leaky-Wave feed for Quasi-Optical Power Distribution at THz Frequencies

M. Alonso-delPino^{#1}, S. Bosma[#], C. Jung-Kubiak^{\$}, J. Bueno[#], G. Chattopadhyay^{\$} and N. Llombart[#]

#Delft University of Technology, The Netherlands

\$ Jet Propulsion Laboratory, California Institute of Technology, USA

