

WE1C-1

A 2W 9.5-16.5 GHz GaN Power Amplifier With 30% PAE Using Transformer-Based Output Matching Network

Xiao Sun¹, Xu Zhu², Yong Wang¹, Pei-Ling Chi³, Tao Yang¹

¹University of Electronic Science and Technology of China, China

²Northern Institute of Electronic Equipment of China, China

³National Chiao Tung University, Taiwan, China

Outline

- Introduction
- Design approach
- Measured performances
- Conclusion

Introduction

- Power Amplifier (PA)
 - Important part in communication systems
 - Output power, efficiency, bandwidth, linearity
 - Critical trade-off: bandwidth vs efficiency
- Large Demands for PAs
 - Broadband or multiband operation
 - High efficiency

- Transformer structure can cover multioctave bandwidth
- Large coupling coefficient
- Require multiple metal layers
- Only two metal layers in GaN technology

$$BW = \frac{\omega_0}{2\pi} (\sqrt{\frac{1}{1-k}} - \sqrt{\frac{1}{1+k}}), \quad k \le min(\sqrt{\frac{1}{N_1}}, \sqrt{N_1})$$

$$L_{2A} = \frac{L_2 - M}{N^2}, \quad C_{2A} = N^2 C_2, \quad R_{2A} = \frac{R_2}{N^2}$$

$$N_1 = \frac{R_2}{R_1} < \frac{R_{2A}}{R_1}, \quad N_2 = \frac{1}{N^2} = \frac{R_{2A}}{R_2} < \frac{R_{2A}}{R_1}$$

BW is limited by impedance ratio N_1

$$R_1 \rightarrow R_2 \rightarrow R_{2A} = 50 \Omega$$

Impedance ratio decrease
The bandwidth increase

Norton transformation

Final network

- Exhibit the same circuit form
- A much wider matching bandwidth

Matching performance

Good performance has been achieved with the proposed circuit

Final MMIC

Size: $2.9 \text{ mm} \times 1.2 \text{ mm}$

Configuration:

- Transformer-based output matching network
- 2 stages amplification
- Transistor size:
 - Power stage: 6×125 μm
 - Driver stage: 4×125 μm
- Frequency band: 9.5-16.5 GHz
- Bare die/50 Ω fully matched
- Drain biasing: 23V

Measured performances

Small signal

- Measured : Solid Traces
- Modeled: Dash Traces
- Small gain is around 20 dB
- Input return loss < 6 dB
- Output return loss < 10 dB

Measured performances

Large signal vs Frequency

- Measured : Solid Traces
- Modeled: Dash Traces
- Peak power of 34.8 dBm and 35.4% PAE at 11.5 GHz
- Greater than 30% PAE maintained over full 9.5-16.5 GHz bandwidth

Measured performances

Large signal vs Pin

PAE vs Pin

Comparison

Ref.	Tech	Freq.	Gain	P _{sat}	PAE	Area
		(GHz)	(dB)	(dBm)	(%)	(mm²)
[12]	0.25 μm GaN	9-10	10-12	36.5-37.2	31-36.5	3.78
		13.5-16		35-36.4	30-35.7	
[13]	0.25 μm GaN	6-10.5	17-27	34-36	15-34	5.4
		10.5-18	15-22	34-38.5		
[14]	0.25 µm GaN	7-17	13.1-18.6	35.7-37.5	10.2-12.3	11.15
[]	от—о ритт отопт	· - -				
[15]	0.25 μm GaN	10.5-15.5	15-21.2	37-39.8	35-42.2	6.5
This						
work	0.25 μm GaN	9.5-16.5	15-22.4	33.1-34.7	30.1-35.9	3.48

 The proposed PA achieves a wider bandwidth with high PAE and small size

Conclusion

- A transformer-based output matching network
- Broadband power amplifier
- High efficiency and small size
- Apply in the electronic warfare systems and radar systems

Thank You!

