

We1C-2

A 1.5-to-17GHz Non-uniform Distributed Power Amplifier Using Reconfigurable Modules in 0.25µm GaN HEMT

Shijie Chen¹, Fuchen Yan¹, Yuan Liang², Shu Ma¹, Dexin Shi¹, Xiang Li³, Huaizong Shao¹, Tao Yang¹ and Yong Wang¹

¹University of Electronic Science and Technology of China, Chengdu, China

²Guangzhou University, Guangzhou, China

³Nanhu Laboratory, Jiaxing, China

- High Efficency NDPA Design Challenges
- PCPCT Design Details
- FRDPA Design Details
- Demonstration of GaN-based FRDPA
- Conclusion

- High Efficency NDPA Design Challenges
- PCPCT Design Details
- FRDPA Design Details
- Demonstration of GaN-based FRDPA
- Conclusion

High PAE NDPA Design Challenges

- The reason of Non-Uniform Distributed's (NDPA) low PAE:
 - The impedance mismatch of transistors
 - —The loss of output match network
 - The non-ideality of bias circuitry

High PAE NDPA Design Challenges

- The characteristic of the ideal on-chip bias circuitry:
 - -Higher impedance \rightarrow larger inductance L_L
 - -Higher self-resonance point \rightarrow Smaller parasitic capacitance C_P
 - -More sufficient current carrying → wider transmission lines W

It is difficult to achieve!

Drain Bias Inductor

High PAE NDPA Design Challenges

- The effect of the non-ideal bias circuitry on NDPA:
 - -Exhibiting poor choke effect over a wide bandwidth.
 - -Resulting in a bandpass effect.

- High Efficency NDPA Design Challenges
- PCPCT Design Details
- FRDPA Design Details
- Demonstration of GaN-based FRDPA
- Conclusion

PCPCT Design Details

- Parasitic capacitance phase compensation technique(PCPCT)
 - -Utilizing the parasitic capacitance of a bias inductor to

 $TL_{G,4}$

 RF_{IN}

 $TL_{G.1}$

 $TL_{G.3}$

 $TL_{G,2}$

 $\overline{TL_{G,6}}$

 $\overline{TL_{G,5}}$

 $\overline{TL_{G,7}}$

PCPCT Design Details

• A simulation of S_{22} , PAE and $P_{\rm sat}$ for different $C_{\rm pi\,(i=1,2)}$ are

nearly identical

- High Efficency NDPA Design Challenges
- PCPCT Design Details
- FRDPA Design Details
- Demonstration of GaN-based FRDPA
- Conclusion

- Frequency Reconfigurable Distributed PA(FRDPA) Design
 - Frequency reconfigurable application scenarios
 - For multi-bandwidth PAs, the instantaneous operating bandwidth do not need to be so wide.
 - FRDPA has the potential to replace conventional NDPA if the switching speed is fast enough.

Bandwidth narrowed, performance improved!

- Frequency Reconfigurable Distributed PA(FRDPA) Design
 - Reconfigurable Drain Bias Choke Module
 - The self-resonant point and inductance of the square inductor needs to be changed accordingly by switching

- Reconfigurable Drain Bias Choke Module
 - Mode 1 provides a larger inductance L'

 at low frequencies.
 - Mode 2 provides the better load impedance for transistors.
 - Mode 3 provides a smaller capacitance C'_P at high frequencies.

- Reconfigurable Gate Bias Choke Module and dumping load module
 - These two rec. module can optimize S₁₁ and optimize source impedance of transistors.

Reconfigurable Gate Bias Module

Mode Control Table

Mode	Gate Control Voltage			
	S5	S6	S7	
1(1.5-6GHz)	0V	-10V	-32V	
2(5-10GHz)	0V	-30V	0V	
2(9-18GHz)	0V	0V	0V	

Reconfigurable Dumping Load

- Reconfigurable Gate Bias Choke Module and dumping load module
 - The optimization of the reconfigurable module for input matching in three modes.

- High Efficency NDPA Design Challenges
- PCPCT Design Details
- FRDPA Design Details
- Demonstration of GaN-based FRDPA
- Conclusion

- Die micrograph
 - Area with PADs: 3.76mm x 2.4mm
- Technology
 - 0.25 µm GaN HEMT
 - $-f_{\tau}$ = 25 GHz

 Minimize the discrepancy between the simulated model and the measured performance by the tuning switch the control voltage.

• S₂₁

- ->12dB@1.5-6GHz
- > 11dB@6-9GHz
- ->10.5dB@9-17GHz
- S₁₁&S₂₂
 - <-7dB@1.5-6GHz& <-11dB@1.5-6GHz
 - -<-12dB@6-9GHz&<-9.5dB@6-9GHz
 - <-9dB@9-17GHz& <-9.5dB@9-17GHz</p>

• PAE_{max}

- ->31%@2-6GHz
- ->27%@6-9GHz
- ->23.5%@9-17GHz

- ->38.1dBm@2-6GHz
- ->38.2dBm@6-9GHz
- > 37.1dBm @9-17GHz

IMS Demonstration of GaN-based FRDPA Connecting Minds. Exchanging Ideas.

– Comparison

Parametric	Technology	Freq.BW (GHz)	Gain (dB)	Supply (V)	Total Gate width(mm)	P _{sat} (dBm)	PAE (%)	Average PAE* (%)
[3] IMS	QGaN15	4-16	15.8- 17.5	18	1.05	33.8- 35.4	11.8-33.9	20
[4] TMTT	0.25μm GaN	6-18	10±2	30	6	38.7- 41.2	13.6-33.8	24
[7] IMS	0.2 um AlGaN	2-20	9.7	30	6	39.9- 43.4	15.3-35.7	26
		2-6	12.9			38.1- 38.8	31-35	
This work	0.25µm GaN	6-9	11.2	28	2.02	38.2- 38.6	27-30	28
	9	9-17	11.1			37.1- 39.2	23.5-34	

- High Efficency NDPA Design Challenges
- PCPCT Design Details
- FRDPA Design Details
- Demonstration of GaN-based FRDPA
- Conclusion

Conclusion

A GaN-based FRDPA is designed and fabricated.

PCPCT and reconfigurable module is proposed.

0.25 µm GaN HEMT.

Ultra-wideband from 1.5 to 17 GHz.

Thank You!

The following are the authors' emails. Questions are welcome. chenshijie3018@163.com, yongwang@uestc.edu.cn

