

We1C-4

A Balanced Stacked GaN MMIC Power Amplifier for 26-GHz 5G Applications

A. Piacibello, C. Ramella,

V. Camarchia, and M. Pirola

Politecnico di Torino, Turin, Italy

Outline

- Motivation
- Background
- Layout
- Design
- Results
- Comparison with state of the art
- Conclusion
- Acknowledgements

Motivation

- Power amplifiers for wireless communications
- Exploitation of >6 GHz bands (FR2 for 5G)
- Challenges at MMIC level:
 - Gain
 - Power combination
 - Compactness
- Possible solution:
 - Transistor stacking

Background

Transistor stacking

- Borrowed from Si technologies
- Initially applied only to increase supply voltage (DC)
- Concept extended also to RF
- Beneficial for:
 - Gain (x M)
 - Output power (x M)
 - Output impedance levels (x M)
- Limited number N of stages feasible

Background

Challenges:

- Critical stability
- Impedance matching essential for correct operation
- Layout
 - Few metal layers for interconnects (III-V technologies)
 - Crosstalk
- EM simulation setup
- C. Ramella et al., "Electro-magnetic Crosstalk Effects in a Millimeter-wave MMIC Stacked Cell," INMMiC, Cardiff, UK, 2020, pp. 1-3, doi: 10.1109/INMMiC46721.2020.9160341.
- A. Piacibello et al., "Evaluation of a stacked-FET cell for high-frequency applications", Int J Numer Model. 2021; 34:e2881. https://doi.org/10.1002/jnm.2881

Layout

- Different configurations possible
 - Feasibility depends on technology and operating frequency
 - Required interstage matching also has an effect

F. Costanzo et al., "A Novel Stacked Cell Layout for High-Frequency Power Applications," in IEEE Microwave and Wireless Components Letters, vol. 31, no. 6, pp. 597-599, June 2021, doi: 10.1109/LMWC.2021.3073219.

Requirements

- Gain: > 10 dB
- Output power: ≈ 4 W
- Operating frequency: 26 GHz
- Technology
 - WIN Semiconductors' NP15 (150 nm GaN/SiC HEMT)
- Target:
 - Exploring feasibility and advantages of GaN transistors stacking
 (N=2) above K-band

Procedure:

- Design & characterization of 2-stacked cells
 - Different layouts tested
 - Different stability/compactness/performance trade-offs
 - Presented at MMS 2022
- Design & characterization of balanced PAs based on cells
 - This work
- Next?
 - Adoption of cells in load-modulated PAs

2-stacked cells

2-stacked cells

2-stacked cells

2-stacked cells

Balanced PAs

- 2-stage for >10 dB gain
- 6x100 µm driver
- Same topology

Results

Small signal

 $V_{DD,driv} = 20 V$

 $V_{DD,stack}$ =40 V

 $V_{GG,driv}$ =-2 V $V_{G,CS}$ =-2 V, $V_{G,CG}$ =18 V 20 $I_{D,driv}$ =30 mA $I_{D,stack}$ =30 mA

Results

Large signal

$$V_{DD,driv} = 20 V$$

 $V_{GG,driv} = -2 V$
 $I_{D,driv} = 30 mA$

$$V_{DD,stack}$$
=40 V
 $V_{G,CS}$ =-2 V, $V_{G,CG}$ =18 V
 $I_{D,stack}$ =30 mA

Results

Modulated signal

- 64-QAM standard NR downlink signal, 50 MHz BW, 10 dB PAPR
- Baseline ACPR (source + driver): < -48 dBc</p>

Comparison with SoA

Ref	Tech	Freq.	Psat	Gain	ACPR, dBc
#	nm	GHz	dBm	dB	@ PAPR, dB
[9]	150 GaAs	28	26	12	-28 @ 7.3
[10]	150 GaAs	28	28.5	23	-30.1 @ 7
[11]	150 GaAs	28	28.7	14.4	-32 @ 10.5
[12]	150 GaN	28	30	6.2	-28.5 @ 9
[13]	150 GaAs	24	30.9	12.5	-30 @ 7.5
[14]	150 GaN	28.5	35.6	12	-27 @ 8
[15]	150 GaN	27.5	36	19	NA
[16]	150 GaN	28.5	39	30	-35 @ 10
This work	150 GaN	26	36*	10	-30 @ 10

Conclusion

Balanced PA based on stacked cells

- Effect of layout on performance
- Compact gain enhancement solution
- Potential interest for GaN at ≈26 GHz
- Stability and sensitivity critical
- Next steps
 - Adoption in load-modulated PAs
 - Feasibility at >>26 GHz?

Acknowledgements

Technology:

- WIN Semiconductors: University Program
- Italian Universities Consortium (MECSA)

- Instrumentation:
 - Keysight Technologies
- Financial support:
 - Italian Ministry of Universities and Research (MUR)

