

Additively Manufactured Flexible On-Package Phased Antenna Arrays with Integrated Microfluidic Cooling Channels for 5G/mmWave System-on-Package Designs

Kexin Hu, Theodore W. Callis, Manos M. Tentzeris Georgia Institute of Technology, Atlanta, US

Outline

- Motivation
- Challenges and proposed solution
- Design of a 2.5D UWB antenna array
- Integrated microfluidic channel
- Fabrication process
- Measurement results
- Conclusions
- Q&A

Motivation

Increasing demand for future System-on-Package designs

- -real-time response
- deployable packaging
- highly-integrated modules

Flexible phased arrays

- -Support various platforms
- -adaptive beam steerability
- –deployable structures

Motivation

Need for Flexible hybrid electronics(FHE)

- Conformal in form factor
- Resilient and adaptable performance to bending and on-body effects
- -Reliable both RF and mechanical perspectives

Advantages of additive manufacturing

- –High customization
- Low cost and less waste of materials
- Wide range of flexible materials

Challenges

- 3D printed flexible materials sensitive to thermal treatment
 - Mechanical deformation
 - Deterioration of electrical performance
 - Difficult to attach RFICs
- Lack of material characterizations at mmWave frequencies
- Limited heat Dissipation due to poor thermal conductivity

Proposed Solution

- Inkjet printed 2.5D ultra-wideband antenna array
- 3D printed Polypropylene substrate and encapsulation
- 3D printed microfluidic channels
- Embedded RFICs with conductive epoxy

IMS Design of a 2.5D UWB antenna array

Conventional UWB elements

- -Bulky and heavy
 - » Hard to integrate with packages
- End-fire radiation pattern
 - » Not isolated from human body

This design:

- -2.5D structure using 3D printing
- -24-40GHz bandwidth for 5G mmWave
- Broadside radiation pattern

2.5D UWB antenna array

Integrated microfluidic channel

- SLA printed cylinder cooling pipe runs below the IC
 - -Back reflector integrated with the module
 - No internal support required during printing
 - -Structural support included

SLA printed microfluidic channels

Fabrication

3D print 0.2mm thick Polypropylene from Ultimaker S3

Sand substrate surface and apply 3 min UVO treatment

Inkjet print 2 layers of SU8 as buffer layers

Inkjet print antenna array and IC footprint

Prepare IC stencil on PET

Inkjet printed pattern and PET stencil

Fabrication

- Measurement setup in an anechoic chamber
- SPI control using Matlab program
- DC power supply
- Flat and bent conditions

- Flat vs. bent conditions:
 - -the change in impedance matching and element spacing
 - » shift the operational frequencies
 - » slightly increase the beamwidth and side lobe level

- Beam steering from -37° to +37°
 - > -10.09dBi maximum realized gain and -8.45dB sidelobe level

- Water pumped through the channel at 1.45 mL/s
- Temperature measured at the surface of the IC
- 108°F to 98°F in 5min
- Estimated heat dissipation 1.052W

Conclusions

- The first fully additively manufactured flexible on-package phased array with an integrated microfluidic channel.
- The attached beamformer IC is sustainable for practical bending radii in flexible wearable applications.
- Sufficient mitigation of IC temperatures is provided by the microfluidic channel.
- Low-temperature IC alignment/assembly process combined with AM can be applied to flexible MCM and SoP designs.

Thanks! Q&A

