

WE1D-2

A Fully 3D-Printed Flexible Millimeter-Wave Doppler Radar

H. Tang, Y. Zhang, B. Zheng, S. An, M. Haerinia, Y. Dong, Y. Huang, W. Guo, and H. Zhang

University of Massachusetts Lowell, MA, USA

Outline

- Introductions to flexible hybrid electronics
- 3D-printed Doppler radar design
 - Design diagram
 - Layer stack-up
- Printing processes
- Radar characterization
 - Antenna arrays
 - Field tests for the printed mmWave radar
- Conclusions

Introductions to flexible hybrid electronics SANDIEGO

- Flexible hybrid electronics (FHE)
 - Flexible
 - Hybrid technology
 - Thin and lightweight
 - Customizable
 - Limited performance Two layers
 - Low design complexity
- Low frequency

- Key Challenges
 - Proper printing materials
 - Reliable bonding layers
 - Robust interconnections

3D-printed FHE circuits[1]

3D-printed flexible Doppler radar design

Key challenges

- Proper printing materials
- Reliable bonding layers
- Robust interconnections

Our solutions

- A combo of commercial PCB and TPC
- High heat flexible epoxy
- Mechanically drilled vias filled with epoxy

3D-printed FHE circuits[2]

https://www.designhmi.com/2016/07/26/flexible-hybrid-electronics/

3D-printed flexible Doppler radar design

- Diagram
 - Digital unit
 - Baseband unit
 - mmWave unit

The design diagram of the proposed Doppler radar

Layer stack-up

The layer stack-up of the proposed 3D Doppler radar

Printing processes

Printing processes

Printing processes

Printing processes

Print voltage layer(C3) \longrightarrow Drill vias(C1-C3) \longrightarrow Coat epoxy(E2) and print TPC layer(I3) Print signal layer(C4) \longrightarrow Drill vias(C1-C4) \longrightarrow Coat epoxy(E3)

Printing processes

Assemble the components on the printed board by conductive epoxy and high-heat epoxy

Radar characterization

Photos of the 3D-printed flexible mmWave radar

Radar characterization

Radar spectrum measurement

Printed 24 GHz antenna array calibration

Radar characterization-field tests

Field tests for the printed flexible mmWave radar

Radar characterization-flexibility tests

Flexibility tests for the printed flexible mmWave radar

Radar characterization-flexibility tests

The proposed 3D-printed radar was attached to a vehicle's rear bumper cover by tapes.

Flexibility tests for the printed flexible mmWave radar

Conclusions

Our achievements

- We developed a 3D-printed multilayer flexible mmWave Doppler radar.
- The detection performance and flexibility of the prosed radar have been characterized.

Challenges and future plans

– Commercial PCB substrate?

- Mechanically drilled and manually filled vias?

– Blade-coated high-heat epoxy?

- Components assembly?

Calibrate the TPC

One-part epoxy

Design adapters or anisotropic epoxies

