

We1F-3

A Compact and High-Power Frequency-Selective Plasma Limiter with an Ultra-High Isolation

Sandeep Narasapura Ramesh, Abbas Semnani University of Toledo, Toledo, Ohio

Motivation

HEM/EMP

- instantaneous, and intense electromagnetic fields
- disrupt electrical systems and high technology microcircuits.

Solutions for defending electronic systems

- reconfigurable and selective limiters
- allow system to function over safe frequency bands
- block bands that pose high-power threats.

Ideal FSL Characteristics

Existing FSL Technology

- Ferromagnetic, Semiconductors, Phase change, Multiplexer and Filter
- Wideband rejection, Power handling, Insertion loss, Reconfigurability

We1F-3

Absorptive Filter Topology

- High isolation and selectivity using low-Q resonators
- Plasma based inter-resonator coupling

Safe Power

Constructive Interference

$$\theta_p - \theta_p = 0 \deg$$

High Power threat

Destructive Interference

$$\theta_p - \theta_p = 180 \deg$$

ABCD Analysis

- derive equivalent S Parameter Matrix of device
- optimize k_e and θ_d for Plasma OFF and ON

Fabricated Prototype

- Rogers TMM4 board ($\varepsilon_r = 4.5$, $\delta = 0.01$, h = 1.52 mm)
- Quarter-wavelength planar microstrip resonators (Q = 200)
- Littelfuse SE140 as Plasma Shell (V_{dc} = 140 V)

•
$$P_{th} = 34.5 \text{ dBm}$$
, IL = 1.5 dB, 10 dB FBW = 2.8%

• Capacitor range = (0-0.8 pF), Frequency tuning = 600 MHz, 10 dB FBW = (1% - 2.7 %)

- DC Bias provides seed electrons for pre-ionization and reduces Microwave Power required for breakdown
- DC Block Capacitor and RF Resistor separates DC and Microwave signals. Power Tuning Range = 19 dBm

Response and Recovery Time

- Crucial in high-power systems.
- RT < 10ns

Comparison with State of Art

	Technology/	Power	Isolation	Insertion	Response	Power	Frequency
	Topology	handling (dBm)	(dB)	loss (dB)	time	tuning (dBm)	tuning
[2]	Diode	42	22	1	10 ns	No	No
[5]	Phase change	40	15 - 40	0.7	4 μs	6	No
[6]	Phase change	25	16	1.5	N/A	No	No
[8]	Parametric	30	17	0.8	200 ns	No	No
[10]	Magnetic	35	11	4	200 ns	No	No
[11]	Triple Mode	45	45	3.1	N/A	58	1.5 - 2 GHz
[13]	Bandstop	20	18	2	10 ns	No	No
[15]	MNRC	15	7.5	3.5	17 ns	No	7.5 - 12.5 GHz
[16]	Multiplexer	38	22	1.8	10 ns	17	1 - 1.3 GHz
[17]	Plasma	50	35	1.6	10 ns	10	No
This work	Absorptive plasma	52	60	1.5	10 ns	19	1.55 - 2.15 GHz

- Outperforms all the state of art devices in power handling, bandstop isolation and reconfigurability.
- IL can be improved by using higher QF resonators

Additional Slides

Insertion Loss - FSL

- All-Pass Insertion Loss as a function Resonator Quality Factor
- Cavity based Resonator is preferred for lower IL

Bandwidth Selectivity - FSL

- Bandwidth Selectivity as a function of External Coupling Coefficient
- Lower ke is preferred provided custom plasma shells are available

- Plasma Based FSL employing EVA Cavity Resonators
- Lower IL is expected due to higher QF of the Resonator

