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* Introduction - Self-Interference Cancellation in electrical-balance duplexer
(EBD) RF front-ends

 Motivation - Introduce theoretical bounds and methodical steps to achieve
optimal design in practical self-interference cancellation (SIC) networks
* The solution proposed in this work
— Consider practical EBD RF front-end and antenna
— SIC Load-Balancer (LB) design is equivalent to impedance matching
— Fano-Bode limit - Impedance matching as SIC bandwidth integrals
— Chebyshev BPF - an optimal extraction of the Fano-Bode bound
— SIC - BW performance simulations vs. test results
— Comparison with other reported works

 Conclusions
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a) Quadrature hybrid (or 0/180°). Passive/Compact. 3dB TX and RX Loss

b) Load Balancer network. Lumped/Compact integrated SIC.
Accuracy/Tunability and linearity are critical
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and Optimal Design for the Self-Interference Cancellation

RC Load Balancer Network:
[Mikhemar, ISSCC ‘09]

v" Tunable
— Non-compatible with real antenna SIC
— Narrow Band
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Objectives of this work:

RLC Load Balancer Network:
[Van Liempd, TMTT ‘16]
v Tunable wide-band SIC performance

v' Commercial antennas compatibility
— Analysis of SIC LB design

To hybrid C,
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a) Analyze and define the SIC-BW relationship (SIC depth vs. Bandwidth)
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b) Obtain an optimal load-balancer network to achieve maximum SIC-BW
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Quadrature Hybrid:
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G2 IMS  practical EBD RF Front-End and Antenna
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Antenna:
TAOGLAS FXP830.07.0100C

Free-space reflection
coefficient test results
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I';- Load-Balancer [y = Sy, + 2289126l Bous 5)
reflection coefficient L= 52:Bour

‘ where I'g, . 18 the reflection coefficient of the LB load. For
RO simplicity of implementation (and calculation), we assume an
I'B out () |Sus SuB] I'gin(f) I'* B ideal (f) P . ty : P ( ) :
: I open circuit as the output of the balancer, hence full reflection
- SZIB SZZB g : . .
: (I's,,~ = 1). Moreover, passive LB designs reduce (5) to

Matching : 2
L Network L g =S, + 1(‘%?]1 (6)
Short Longﬂ
Load Balancer (LB) network design: delay del
« Similar terms for the ideal SIC (I'g ;.;) and LB (I') reflecti[n COfoiCiZﬁQ
! Siio (f) I | - TX
I'Bideat (f) = | = —Ta(f) =
LB design is equivalent to impedance matching 5319 (f)Sa3g (f) )L Leglké\ge
* Dictate conjugate matching with I'*; ..., S115(f) + 1 _215811 (f) | Signal
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Matching RC BOde

Network Load

EU' IHPED::CS:EEI?TCHING c, tRo
i S H. W. Bode,
L —
— Lo "Network Analysis and

Feedback Amplifier Design",
Bell Labs, 1945.

Constant
In|1/T"| integral

* Bode related the maximum maghnitude of
the reflection coefficient I'(w), as seen by
a real source with an RC load.

Matching Arbitrary
Network Reactive Load

i NETWORK N A
NETWORK N' NETWORK N

1 ] -
.{ et al e ol %I
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Fano

R. Fano,

“Theoretical limitations on
the broadband matching
of arbitrary impedances,”
Journal of the Franklin
Institute, 1950.

where ¢g(w) is a weighting function that depends on the
transmission zeros of the reactive network of the load when
cascaded with the matching network. A 1is related to the
reactive load and may also depend on the matching network.

Fano generalized the impedance
matching problem for any rational

reactive load.

IEEE MIC| ETHEORY &
A TECHNOI ICIETY



OO IMS  pano-Bode Limit and the SIC-BW Relationship

Connecting Minds. Exchanging Ideas. SAN DIEGO

z
Matthaei, Young, and Jones, E T
“Microwave Filters, Impedance- m : F
Matching Networks, and Coupling 8 ] I I | o
Structures,” , Artech House, 1980. 5 ; Impedance |
g 3 Mismatch 5 |
: AVAV
* | 'i !
OD We Wg wa Wh
Mi smaitc h error = RADIAN FREQUENCY, w a-3827-96
SIC error FIG. 1,032 CURVES ILLUSTRATING RELATION BETWEEN BANDWIDTH AND DEGREE OF
IMPEDANCE MATCH POSSIBLE FOR A GIVEN LOAD HAVING A REACTIVE
COMPONENT

* Impedance-matching relationship, illustrates the SIC-BW trade-off

AMITT-S
IEEE MICROWAVE THEORY &
A TECHNOLOGY SOCIETY



o0 IMS Optimal Extraction of the Bound - Chebyshev BPF _=—=

Connecting Minds. Exchanging Ideas.

Chebyshev Ma;tching Network

' Impedance mismatch

Il P! IT] 1 1 o 1:'m Ls; Zsn
D / T(w)dw = A ml A e e e TR
p— . L =88T8, TE; | s
Targetimpedance @,,w, “* “ © i Zn P Bideat ()
mismatch BPF corner frequencies =i = =L = =
| SIC - BW Integral | rano |~ soures
- ano :
htegra v For a lossless network, magnitudes of
. — — input and output mismatches are equal!
Mismatch error = SIC error = v BPFis a displaced LC LPF @ w,=/w,w,

* A BPF matching network enables an optimal extraction of the bound
* |deal extraction requires square shaped BPF, hence infinitely high-order filter

* High order filter enables an approximation of a square shaped BPF
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R= =r SMA
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» Series inductors with high inductance were replaced with transmission lines

* A resistor replaced the transformed Z, load
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BPF component
' tuning is needed!

40 —Sim.
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 Antenna and quadrature hybrid were connected by SMA and reinforced together to
a mechanical Perspex sheet I

 Antenna on Perspex deviated from free-space performance

 The BPF components were adjusted accordingly
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Comparison with Prior Art EBD

SAN DIEGO

fo Antenna Balancer SIC BW
2] 1.95 GHz @ 40 nm CMOS 50 dB
RC Tunable 6 MHz
4] 2.08 GHz 0.18-,:m SOI CMOS 45 dB
F{LCG bit Tunab@ 230 MHz
[8] 1.89 GHz Yes Electromechanical 40 dB
10 dBr Tuner 20 MHz
/\ This work 2.65 GHz Yes Chebyshev on PCB 25 dB
SARSE 7 dB Un-Tuned 300 MHz

 TXleakage is highly dependent on the antenna reflection magnitude and the
respective equivalent reactive order

* SIC performance for a 50 Q load is much better than for a real Wi-Fi antenna

* Tuning capability and network tolerances are critical for SIC performance
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o2 IMS Conclusions
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* Introduced the Fano-Bode integral as a SIC - BW theoretical bound

* Presented methodical steps and Chebysheyv filters load balancers for
achieving optimal design for the Self-Interference cancellation (SIC)

e Cancelation and tuning of any TX leakage becomes more challenging
when the equivalent order of the leakage increases. Load balancer
filter tuning is required

Thank you for your attention!
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