

WE1G - 1

Improving the Short-Range Perception of MIMO Radars with LO Feedthrough Topologies by Complex Sampling

Dominik Schwarz, <u>Nico Riese</u>, Ines Dorsch, Christian Waldschmidt Institute of Microwave Engineering, Ulm University, Germany

Motivation

- Need for high-resolution 4D radars
 - ADAS and autonomous driving
 - Very high channel counts
- Other system topologies
 - LO Feedthrough
 - → Induces image peaks
- Complex sampling

[1]

[1] S. Sun et al., "MIMO Radar for Advanced Driver-Assistance Systems and Autonomous Driving: Advantages and Challenges," IEEE Signal Processing Magazine, vol. 37, no. 4, Jul. 2020.

Outline

Next Generation Radar Sensor Concept

Complex Sampling & LO Feedthrough

Verification by Radar Measurements

Short-Range Parking Scenario

Next Gen. Radar Sensor Concept

- State-of-the-art
 - Cascading 4 MMICs
 - LO: Coherent divider network
- Next generation
 - Cascading 12 MMICs for
 1728 virtual radar channels
- Mixed topology for LO
 - Feedthrough and divider network

[2] Texas Instruments Incorporated, MMWCAS-RF-EVM mmWave cascade imaging radar RF evaluation module bottom board image.

Next Generation Radar Sensor

Range Shift for LO Feedthrough

Ramp signal is delayed on other MMICs

- → Reduced beat frequency, target seams closer
- → Other MMICs transmitting: target seams further apart

IMS Complex Sampling & LO Feedthrough

Verification by Radar Measurements

[1] S. Sun et al., "MIMO Radar for Advanced Driver-Assistance Systems and Autonomous Driving: Advantages and Challenges," IEEE Signal Processing Magazine, vol. 37, no. 4, Jul. 2020.

Complex sampling: no image peaks, reduced noise

Complex sampled case: reduced SLL in DoA est.

Real sampling: image peaks → circular distortions

Conclusion

 LO Feedthrough convenient for high-resolution radars

- No distribution networks
- Easy correction of range shift

Complex sampling

- No image peaks due to correction
- Reduced noise level

Contact:

nico.riese@uni-ulm.de dominik-1.schwarz@u...

www.uni-ulm.de/in/mwt/

Backup Slides

Next Generation Radar Sensor

- No parasitic Radiation
- MMICs under antennas
 - Min. loss
 - Free antenna placement

System Performance

