

We1G-2

A Compact 77 GHz IQ-Modulated Transponder for High Gain and High Dynamic Range Radar Target Simulation

Christoph Birkenhauer¹, Georg Körner¹, Patrick Stief¹, Andreas Hofmann¹, Mohamad Alami El Dine¹, Christian Carlowitz¹, Martin Vossiek¹

¹Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg,

Outline

- Motivation: Radar Target Simulation
- Radar Target Modulator Architectures
- Design Considerations
- Implemented Realization of a Modulator
- Experimental Results
- Conclusion

Radar Target Simulation

- Building block for development of self-driving cars
- Simulation of targets instead of mechanical construction
- Target parameters emulated by RTS: RCS, distance, velocity

Classical Approach

- Propagation time simulated with delayline
- Moving targets replicated by Doppler modulation
- RCS by adjustable amplification
- Only limited target parameters
 - Step width for distances
 - Single target

Digital RTS

- Propagation time simulated with storage
- Doppler modulation in digital domain
- RCS by adjustable gain
- ADC, DAC, processing expensive

Alternative RTS Concept for FMCW

- Round trip time results in frequency difference
- Modulation as means to create a frequency shift without time delay

Possible Modulation Techniques

Mixer

- Straight-forward design
- LO power variation

Attenuator (PIN Diode)

- Low modulation index
- Independent from input level

SILO

- Pulse duration limited
- Low bandwidth
- Non-linear relation between modulation and envelope

SSB Modulator Architecture

Resulting spectral Components

- Carrier (near DC)
- Right sideband
- Left sideband (mirrored)

Modulator Architecture

- SSB to reduce unwanted sideband
- Optional: Carrier cancelation

Concept for the Frontend

Input Network

- Passive SIW structure
- Provides phase shift for IQ-modulation

Active Modulation Channel

- LNA for gain setting
- PIN diode for modulation
- Configuration for high dynamic range and reverse isolation

Output Network

- Passive SIW-structure
- In-phase combination

SIW Dimensions

- Minimal realizable via spacing desirable for low losses
- Fixed set of radii

$$r = \frac{s}{2\sin(22.5^{\circ}/n)}$$

- Perfect fit on virtual grid
- Complex designs can be created by predefined elements or library

Design of Passive Structures

Hybrid Coupler

- Signal split
- 90°phase difference

Phase tuning

- Air holes change effective dielectric properties
- Additional filling allows tuning after fabrication

Integrated Load

- Termination of unwanted signal energy
- FR4 substrate is used as load

WR12 connector

- Matching with stepped transformer
- Additional external circuitry possible
- Application specific antennas

Frontend Integration

Input Network

- passive SIW structure
- provides phase shift for IQ-modulation

Completed Modulator Assembly

Modulation Unit

- 28 dB extinction ratio via PIN diodes
- 24 dB gain variation via amplifiers
- I,Q and I2C connections
- WR12 for external components
- Modular design allows use of different frontends

Experimental Results

Preliminary performance estimation

- Non-perfect sideband suppression visible for SRR
- Nonlinearities of PIN diode lead to additional targets
 - > Predistortion useful

Test Setup

Experimental Results

Conclusion

- Novel modulator concept based on PIN diodes was presented
- Basis for cost effective Radar Target Simulation
- Dynamic range only limited by noise floor and amplifier parameters
- Sideband suppression not required for all use cases
- Carrier can be hidden depending on radar and distance
- Predistortion useful to reduce additional targets

Backup Slides

S-Parameters

Plots

Plots

Schematic

