



#### **We1H-3**

# Metal-Dielectric Coaxial (MDC) Dual-mode Resonator for Compact Inline Bandpass Filter

Yuliang Chen and Ke-Li Wu
Department of Electronic Engineering
The Chinese University of Hong Kong







#### **Outline**



- Introduction
- MDC Dual-mode Resonator
- Inline Quadruplet and Triplet Sections
- Design Examples
- Summary





#### Introduction



# The metallic coaxial filter still dominates existing market for 5G BTS due to its:

- Mature production process (low cost)
- Relatively high Q-factor (low loss)
- Flexibility in realizing cross-couplings

#### Few effective solutions for its:

- Further miniaturization
- Inline configuration for layout simplicity



Metallic coaxial filter for BTS with "mushroom" structure





#### Introduction



Except for degenerate multi-mode resonator, employing two or more dissimilar modes in one physical cavity was developed recently.

- The size reduction can be maximized (if the dissimilar modes are all fundamental modes)
- The high-order resonances related to each dissimilar mode can be staggered to achieve a improved spurious performance<sup>[4]</sup>







Miniature resonators with dissimilar modes<sup>[1]-[3]</sup>



<sup>[1]</sup> C. Tomassoni, S. Bastioli, and R. V. Snyder, "Propagating waveguide filters using dielectric resonators," *IEEE Trans. Microw. Theory Techn.*, vol. 63, no. 12, pp. 4366–4375, Dec. 2015.

<sup>[2]</sup> A. A. San-Blas, M. Guglielmi, J. C. Melgarejo, A. Coves and V. E. Boria, "Design procedure for bandpass filters based on integrated coaxial and rectangular waveguide resonators," *IEEE Trans. Microw. Theory Techn.*, vol. 68, no. 10, pp. 4390-4404, Oct. 2020.

<sup>[3]</sup> Y. Chen, Y. Zhang, and K.-L. Wu, "A dual-mode monoblock dielectric bandpass filter using dissimilar fundamental modes," *IEEE Trans. Microw. Theory Techn.*, vol. 69, no. 8, pp. 3811–3819, Aug. 2021.

<sup>[4]</sup> C. Wang, K. A. Zaki, A. E. Atia, and T. G. Dolan, "Conductor loaded resonator filters with wide spurious-free stopbands," *IEEE Trans. Microw. Theory Tech.*, vol. 45, no. 12, pp. 2387–2392, Dec. 1997.



#### **MDC** Dual-mode Resonator



#### **Basic structure**

- Metallized air cavity
- Metallic hollow cylinder: supports TEM mode
- Dielectric puck: supports one HE<sub>11</sub> mode (the other HE<sub>11</sub> mode is pushed away)



Magnetic field sketch

| Eigenmode | Frequency (GHz)       | Q       |                   |
|-----------|-----------------------|---------|-------------------|
| Mode 1    | 3.56639 +j 0.00113858 | 1566.16 | HE <sub>11a</sub> |
| Mode 2    | 3.61651 +j 0.00100547 |         | TEM               |
| Mode 3    | 3.91012 +j 0.00110379 | 1771.22 | HE <sub>11b</sub> |
| Mode 4    | 5.55660 +j 0.00130212 | 2133.67 |                   |
| Mode 5    | 5.73910 +j 0.00179335 | 1600.10 |                   |
| Mode 6    | 5.80478 +j 0.00178315 | 1627.68 |                   |
| Mode 7    | 5.97382 +j 0.00119637 | 2496.64 |                   |

EM eigenmode analysis



Proposed MDC resonator  $(\varepsilon_r = 39.5, \tan \delta = 5e-5, \text{ and } \sigma = 2e7 \text{ S/m for EM analysis})$ 





#### **MDC Dual-mode Resonator**



#### **Control of Dual-mode Coupling**

- Original dual-mode coupling is zero
- To realize a high-order filter, the effect of coupling window must be considered







Arrangement with  $M_{12} \neq 0$ 







# **Possible Coupling Sections**



#### A Inline quadruplet section

- HE<sub>11b</sub> mode is further suppressed
- One TZ on each side of passband is realized
- A grounded double loop can increase inline coupling while reduce diagonal couplings



EM model of quadruplet section



Coupling diagram



Single loop (h = 6 mm and l = 4.2 mm)



Double loop (r = 0.3 mm and z = 1.5 mm)





# **Possible Coupling Sections**



#### A Inline triplet section

- One single-mode cavity + one MDC cavity
- One TZ can be on either side of passband
- Larger inline coupling  $M_{12}$  can be realized by coupling single TEM mode and HE<sub>11a</sub> mode



EM model of triplet section



**TEM** 

 $M_{34}$ TEM MDC MDC TEM

Coupling diagram

Two cascaded triplets with possible 6-2 responses





## **Design Examples**



#### A 6-2 bandpass filter with one CQ

- $f_0 = 3.6 \text{ GHz}$ , BW = 125 MHz (3.47%)
- Asymmetric TZs at -1.3 & 2.2 rad/s
- An asymmetric structure leads to a weak propagation of the HE<sub>11b</sub> mode



Topology with synthesized coupling coefficients



Photograph and responses of the 6-2 prototype





## **Design Examples**



#### A 6-2 bandpass filter with two CTs

- $f_0 = 3.6 \text{ GHz}$ , BW = 200 MHz (5.56%)
- Symmetric TZs at -2.0 & 2.0 rad/s
- The proposed triplet section facilities an independent control of each TZ
- Resonances of HE<sub>11b</sub> are not obvious



Topology with synthesized coupling coefficients



Photograph and responses of the 6-2 prototype





# Summary



A novel dual-mode resonator utilizing two dissimilar fundamental modes is proposed:

- Same volume as metallic coaxial resonator
- Similar unloaded Q with original TEM mode
- Various inter-cavity couplings to realize TZs

A promising option for bandpass filters with:

- Compact size
- Inline layout
- Wide spurious rejection band





