

We1H-6

Synthesis of Simplified Cross Coupled Blocks with All Positive Couplings

Stefano Tamiazzo[§], Giuseppe Macchiarella[#], Matteo Oldoni[#]

Rationale

Rationale

Rationale

Outline

- Problem Statement
- Proposed Solution
- Examples and Conclusions

Outline

- Problem Statement
- Proposed Solution
- Examples and Conclusions

Problem Statement

- Generalized Chebychev response
- Inline Structures
- Finite Transmission Zeros
 - Non-resonant nodes
 - Frequency-variant coupling
 - Cross-coupling (various cross-coupled sections)
- TZs below the passband
 - Negative cross-coupling!

Problem Statement

- Degrees of freedom needed
- Exploit alternative response
- Constrain sign of cross-couplings
- Simplify topology, if possible

Outline

- Problem Statement
- Proposed Solution
- Examples and Conclusions

- Alternative response:
 Reduced Chebychev of order N
 - TZs can be placed
 - M complex reflection zeros can be placed
 - Equiripple passband response obtained
 - Other N-M RZs and N poles are computed
 - Out-of-band atten.: (N-M) order filter

• 2M real degrees of freedom available!

- Given: N, passband RL,TZs
- Place 1 complex reflection zero
- Compute the Reduced Chebychev response
- Synthesize the filter
- Verify sign of cross-coupling
- Sweep the position of the free complex reflection zero (CRZ)
- Map cross-coupling vs CRZ

- Given: N, passband RL,TZs
- Place 1 complex reflection zero
- Compute the Reduced Chebychev response
- Synthesize the filter
- Verify sign of cross-coupling
- Sweep the position of the free complex reflection zero (CRZ)
- Map cross-coupling vs CRZ

→ Im(CRZ) below passband!

- Given: N, passband RL,TZs
- Place 1 complex reflection zero
- Compute the Reduced Chebychev response
- Synthesize the filter
- Verify sign of cross-coupling
- Sweep the position of the free complex reflection zero (CRZ)
- Map cross-coupling vs CRZ

3 resonators1 finite TZs2 imaginary RZs1 complex RZ

- → Im(CRZ) below passband!
- On the boundary:

$$r_{\infty} r_1 = 0$$

Either M_{12} or M_{13} =0!

→ Degenerate triplet

- Given: N, passband RL,TZs
- Place 1 complex reflection zero
- Compute the Reduced Chebychev response
- Synthesize the filter
- Verify sign of cross-coupling
- Sweep the position of the free complex reflection zero (CRZ)
- Map cross-coupling vs CRZ

5 resonators2 finite TZs3 imaginary RZs1 complex RZ

- Uniform signs: $r_{\infty} r_1 > 0$
- Degenerate topology ($M_{24}=0$): $r_1=-r_2$

- Given: N, passband RL,TZs
- Place 1 complex reflection zero
- Compute the Reduced Chebychev response
- Synthesize the filter
- Verify sign of cross-coupling
- Sweep the position of the free complex reflection zero (CRZ)
- Map cross-coupling vs CRZ

For N=6

- Extract the outer resonators (1, 6)
- The remainder has: $Y_{12}(s) = \frac{r_1}{s j\lambda_1} + \frac{r_2}{s j\lambda_2} + \frac{r_3}{s j\lambda_3} + \frac{r_4}{s j\lambda_4}$
- **Conditions:**
 - Uniform signs:

$$r_1 r_3 > 0$$
 or $r_1 r_2 > 0$

Degenerate topology (
$$M_{34}$$
=0): r_1 = $-r_2$ or r_1 = $-r_3$ or r_1 = $-r_4$

Depend on position of the two zeros

6 resonators 2 finite TZs 5 imaginary RZs 1 complex RZ

Outline

- Problem Statement
- Proposed Solution
- Examples and Conclusions

Examples: Triplet

The CRZ region for uniform signs depends on the position of the triplet

- Synthesis:
 - Decide the topology (sequence of extractions)
 - Place the CRZ and compute Reduced Chebychev response
 - Extract everything else but the triplet
 - Check the condition on the residuals of trans-admittance
 - Sweep the CRZ and build the map
- Empirically: largest region when triplet on source or load
- Non-degenerate and degenerate topologies

Examples: Quadruplet and 6-Box

The CRZ region for uniform signs depends on the position of the quadruplet/box

N=8; RL=22dB; TZ=-1.45, -1.15; CRZ=1-2.83*j*

N=6; RL=22dB; TZ=-1.45, -1.15; CRZ=1-2.99*j*

Examples: 14-order Filter

- Filter manufactured and shown in a previous paper
- Was optimized to obtain 2 degenerate 6-box sections

Can it be obtained by the new technique?

Fit the response with a N=14 Reduced Chebychev response with 2 CRZ (initially corresponding with the spurious S21 peaks at 3200MHz)

Examples: 14-order Filter

- Filter manufactured and shown in a previous paper
- Was optimized to obtain 2 degenerate 6-box sections

Fit the response with a N=14 Reduced Chebychev response with 2 CRZ: -1.987*j*, -0.025-1.687*j* Synthesize → Indeed gives 2 degenerate 6-box! Simulate → Very good agreement!

Conclusions

Triplet

- Complex Reflection Zeros allow degrees of freedom:
 - All positive coupling coefficients
 - Degenerate structures Quadruplet

- Maps to place CRZ
- Guidelines for simplified design
- Confirmed by several examples

Conclusions

Complex Reflection Zeros allow degrees of freedom:

All positive coupling coefficients

Degenerate structures
 Quadruplet

Box section (order 6) M_{12} M_{34} M_{56} M_{56} Source M_{14} M_{45}

- Guidelines for simplified design
- Confirmed by several examples

We still have the other fears...

Triplet

Thank you!

Questions?

stefano.tamiazzo@commscope.com

giuseppe.macchiarella@polimi.it

matteo.oldoni@polimi.it

