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* Create models of the system and its components:
— Before creating physical prototypes

4 h 4 N
MODELING AUTOMATION
Simulation + Coding
Analysis Verification
. J - J
Try out new ideas. Eliminate manual steps
Fast repeatable tests. and reduce human error.
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* Test-driven development:
— Test components and their integration at each stage of development

TDD
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* Continuous integration:
— Automate the build and testing of system

Operations and

o
Maintenance 5
D

N
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* Create models of the system

— Before creating physical
prototypes

* Test-driven development:

— Test components at each
stage of development

* Continuous integration:

— Automate the build and
testing of system

you want to do

RESEARCH

System Specification

Requirements Analysis
Define requirements
and constraints

Make if form factor

Mai

DEPLOYMENT

Package, Form Factor

nten:

ance and Updates
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\ Make Tests Pass
(
TEST CASES

Ship it

Verify Unit Tests

Validate System Tests

MBD is More Than Just Models
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/ Add Failing Tests \

See It Work

INTEGRATION
System (HW/SW) Prototype

System Level Validation ‘

Prove system operation

Understand what is possible

MODELING

Simulation

Analysis and Optimization

Try out new ideas.
Fast repeatable tests.

Understand what is practical

Automated and Manual

Coding

IMPLEMENTATION }

Augmentation

Eliminate manual steps

and reduce human error
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o ,\Y [= mmWave Drivers
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* High data rate applications require large bandwidth and drive the move
to mmWave frequencies

5G, 6G, W-LAN Satellite communications Wireless localization
GEO, MEO, LEO W-LAN, UWB, BT
~ ( ) ( LAN, UWB, I )
PEAK RATE & PEAK RATE

Wi/
1 Gbps 50 Gbps o [
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— 18 28 38 60 GHz 1';?:Q::u‘
||||||| FREQUENCY BAND I l . . AN
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o 1IMS mmWave Requirements

Connecting Minds. Exchanging Ideas.

* Large antenna arrays are needed to compensate for propagation losses
* Frequency dispersion must be compensated for wideband signals
* RF performance must be assessed with system metrics (EVM, ACLR)
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onIMS Typical Questions ...

Connecting Minds. Exchanging Ideas.

 How many antenna elements are needed? What type and spacing?
* |s antenna coupling affecting the system performance, e.g. EVM?
* How to design and test beamforming algorithms?

 What is the impact of frequency dispersion on the performance of
wideband signals?

* How to design and test equalization algorithms?

* What happens if a component fails, or if behavior deviates from specs?
* What is the impact of interfering sighals on the receiver performance?
 How to analyze and simulate a system with 1000 antenna elements?
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onIMS Baseline: Single Chain Analysis
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* Perform budget analysis over frequency
— Account for dispersion, losses, impedance mismatches
— Compare ideal (Friis) and non-linear (HB) results
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onIMS Array Design and Integration =
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* Understand the source of noise, non-linearity, dispersion, coupling
Coupling
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* Explore HW architectures and integrate algorithms

J beamformingPhaseShiftsm ¢ | 4+ |

1 patchAnt = phased.CustomAntennaElement;
2 patchAnt.AzimuthAngles = (-180:5:180);

3 patchAnt.ElevationAngles = (-90:5:90);
4 patchAnt.MagnitudePattern = p;

5 patchAnt.PhasePattern = zeros(37,73);

6 patchAnt.MatchArrayNormal = false;

7

8 array = phased.ULA('NumElements"',8,

9 'ElementSpacing', ©.0064,...
10 "ArrayAxis', 'x');
11 array.Element = patchAnt;
12 Direction = 90+30;
13
14 beamformer = phased.PhaseShiftBeamformer(...
15 ‘SensorArray’,array, ...
16 'Direction', [Direction; @],...
17 'OperatingFrequency’',27e9,
18 'WeightsOutputPort',true);
19 [~, phaseShifts] = beamformer(ones(1, 8));
20
21 ize weights between @ and 360
22 phaseShifts = angle(phaseShifts)/pi*180;
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Reference:
Z,,=500hm
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@uIMS  Array Pattern As a Function of ... ==
Frequency (Beam Squinting)
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P, =-30dBm
(Linear behavior)

Input Power (Nonlinearity)
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00 IMS  Verify Wideband System Performanc

Connecting Minds. Exchanging Ideas.

* Verify ACLR and EVM using custom and standard modulated signals
 Circuit Envelope simulation: trade-off accuracy and speed

MEASUREMENTS
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* Raise the abstraction level of the model
* Estimate what matters: antenna coupling, dispersion, phase noise

: AD
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onIMS Example: mmWave BFIC
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« mmWave (24-40GHz) analog beamformer for 5G and SatCom applications

Y SECURE Apvic ROHDE&SCHWARZ RF Sampling +DFE TS i--) mmWave Beamforming Phased-Array
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GATEWAY

I RF I ° IRF SL Power » (,;-unts[*i;'wf- \'(”““, .-:\:‘(,;I'ut

Meter

Available
Input Power dBm

RF PCB Antenna
Toolbox Toolbox

£ XILINX,
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Wideband mmWave Radio Development
Kit for RFSoC Gen-3
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o IMS Example: Otava BFIC
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* Codesign of mmWave beamforming systems e
* Wideband 5G and SatCom performance | g,

e
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Co-design Techniques for wideband mmWave and
SatCom Phased Array Systems
IWTH5, Thursday 15 June, 13:30 - 15:10, Room 29C
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EVM,, = 6%
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o0 IMS Example: From IC to Full System
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* From BFIC to board to complete system 8x AIM cards
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Balancing Tradeoffs: Taming Signal Integrity Challenges in
mmWave Antenna-to-Bits Implementations
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o IMS Conclusions
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* Evolve your models during the design process: document assumptions
and include measurements

* Estimate what matters: antenna coupling, dispersion, phase noise, ...

« Validate results at every step: model component failures and spec
deviation

* Test the design using standard compliant sighals and measure different
metrics beyond CW

e Gain insights into system architectures and algorithms before and
during lab testing
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