

We2A-319-EZ65

System Model-to-Lab Methodology for GNSS Desensitization Testing

Andrew J. Compston, Anthony Tsangaropoulos

oneNav

Outline

- Introduction to GNSS
 - Frequency bands L1 and L5
 - Challenge integrating receivers in mobile devices
- Methodology to generate in-band interference
 - OFDM and GFSK signal generation
 - Nonlinearity model
- Description and validation of methodology
 - Simulation system model
 - Lab measurements
- Conclusions

Radio Navigation Satellite Service

- 4 Global Navigation Satellite Systems:
 - Global Positioning System (USA)
 - Galileo (European Space Agency)
 - BeiDou (China)
 - GLONASS (Russia)
- Frequency bands dedicated exclusively for radio navigation
- Received signals on ground are extremely weak – below noise floor!

Source:

https://gssc.esa.int/navipedia/index.php/Galileo_Signal_Plan

GNSS coexistence is a challenge

oneNav pioneering pureL5 receiver

- Most GNSS receivers acquire L1/E1 (1575.42 MHz) signal before moving to acquire L5/E5a (1176.45 MHz)
- L1/E1 faces more intermodulation interference products than L5/E5
- **one**Nav has built the first and only GNSS receiver that acquires only the L5/E5 signal.
- Still need to characterize receiver's immunity to interference

Three interference scenarios

- Three potential out-of-band signals identified in this study:
 - 5 MHz bandwidth LTE (OFDM)
 - 20 MHz bandwidth Wi-Fi (OFDM)
 - Bluetooth basic rate (GFSK)
- From those signals, three scenarios considered:
 - IM3 of LTE Band3 (~1785 MHz) and Bluetooth (~2400 MHz)
 - IM3 of LTE Band3 (~1785 MHz) and Wi-Fi (~2400 MHz)
 - IM2 of LTE Band72 (~455 MHz) and LTE Band28 (~721 MHz)

Generating OFDM Signals

Wi-Fi: Nfft = 64

LTE: Nfft = 512

3. Fill in the data subcarriers and then take the inverse Fourier transform of each column

Resulting OFDM Signals

4. Copy last Ncp rows to beginning

5. Serialize and low-pass filter

Generating GFSK Signals

4. Frequency modulate (index = 0.32) and low-pass filter

0

Frequency (MHz)

Bluetooth BR

4

IM3 nonlinearity model

- Impractical to simulate at RF required sampling frequency too high
- Instead, use complex baseband-equivalent model
- For input $a(t)e^{j\phi(t)}$, simple third-order nonlinear amplifier output (assuming no phase distortion) is

$$g_3(a(t)) = \left(c_1 + \frac{3}{4}|a(t)|^2\right)a(t)$$

IM3 nonlinearity model output

Extracting IM3 products

IM2 nonlinearity model

- Complex-baseband equivalent OK for intermodulation products close to RF signals themselves like IM3.
- For IM2, need to simulate at actual baseband.
- Given input p(t) + jq(t), output is:

$$s_2(t) = c_1 p(t) + c_2 p^2(t) + j \left(c_1 q_1(t) + c_2 q_2^2(t) \right)$$

 Same principle as IM3 applies: No need to simulate at full RF! But more harmonic terms need to be filtered.

IM2 extraction results

Lab measurement setup/validation

 Independent of each interfering waveform power level: Only a function of the final IM product present at the receiver

Results

Conclusions

- GNSS receiver coexistence on mobile platforms is challenging due to nonlinear intermodulation products
- Demonstrated a computationally efficient method to generate nonlinear intermodulation products
- Methodology to measure pureL5 GNSS receiver desensitivity validated both in lab and simulation model
- Given isolation specification, can estimate GNSS receiver desensitization.

