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Motivation

Simulating RF front-end modules like antennas is essential for design of 
wireless communications

Simulating their behavior can be computationally and time–intensive
Size & complexity of the structure
Frequency range of interest
Operating environment

 Designing an antenna involves determining the suitable set of design 
parameters that generate the desired output response
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Objectives

 Since Machine Learning (ML) techniques provide good representations 
of data
 Build a fast ML-based surrogate model that enables the designers to:
1. Simulate their designs to meet a target spec
2. Obtain the design parameters that correspond to a given spec
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DATA: 
 Input design space 𝑋𝑋 ∈ 𝑅𝑅5
 Output specs 𝑌𝑌 ∈ ℂ134
MODEL:
 ℂDNet

 6 complex dense blocks

FREQUENCY RESPONSE
𝑆𝑆11 from 130.1, 150.05 GHz

PATCH ARRAY
 4 × 4 2D array

Forward modeling

[*]

[*] K. -Q. Huang and M. Swaminathan, "Antennas in Glass Interposer For sub-THz Applications," (ECTC), 2021

Inverse modeling DESIGN PARAMETERS
𝑊𝑊𝑝𝑝, 𝐿𝐿𝑝𝑝,𝑊𝑊𝑎𝑎,𝑓𝑓 , 𝐿𝐿𝑠𝑠, 𝐿𝐿𝑑𝑑,𝑓𝑓

Objectives:

Example: Design of sub-THz Patch Array 
Antenna-in-package

Presenter Notes
Presentation Notes
Microstrip patch is a low-profile antenna with small height and width, and has applications in 5G/6G wireless technologies.The patch array shown here is a 4 x 4 2D array.The stack-up is made up of microstrip structure built on top of glass interposer with a ground plane beneath. Data was readily available, so, we decided to use this example, but we could easily replace it with our favorite example.
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Surrogate modeling with deep complex 
dense net (ℂDNet)

Presenter Notes
Presentation Notes
The forward model takes the input parameters of the actual model, propagates the information through a series of building blocks with complex operations and generates the physically consistent complex-valued output response.
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Objective I: Forward modeling

Obtain a frequency response based on given design parameters
ℂDNet learns the forward mapping between the patch array 

design space 𝑥𝑥 and the frequency response 𝑦𝑦
Train with an ℓ2-supervised loss

ℒ = 𝔼𝔼𝑥𝑥,𝑦𝑦 �𝑦𝑦ℛ − 𝑦𝑦ℛ 2
2 + �𝑦𝑦ℐ − 𝑦𝑦ℐ 2

2

where �𝑦𝑦 ≔predicted 𝑆𝑆11, 𝑦𝑦 ≔actual 𝑆𝑆11
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Modeling physically consistent response:
Passivity of S-parameters

A multiport network is passive if it cannot generate energy

⇔S-parameter matrix is unitary bounded, i.e.,
𝑆𝑆𝐻𝐻 𝑓𝑓 𝑆𝑆 𝑓𝑓 ≤ 𝐼𝐼 ∀𝑓𝑓 ∈ 𝐵𝐵

⟺ max
𝑖𝑖,𝑓𝑓

𝜎𝜎𝑖𝑖 𝑓𝑓 ≤ 1 , 𝑖𝑖: 𝑓𝑓𝑖𝑖 ∈ 𝐵𝐵

All singular values must be bounded by one at all frequencies

Passivity enforcer is added as the last layer of the NN model

Presenter Notes
Presentation Notes
Any energy that is introduced into the network must eventually be dissipated or transported.
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Achieving physical consistency
𝜎𝜎1 > 1 𝜎𝜎1 ≤ 1

𝜎𝜎1 ∈ [0.867, 1.703] 𝜎𝜎1 ∈ [0.587, 1]

Presenter Notes
Presentation Notes
We illustrate the passivity characterization of the predictions for all tuples in the test set. By enforcing constraints on largest singular values of NN predicted S-parameters, we obtain: (a) CDNet predictions without passivity enforcement. (b) CDNet predictions with passivity enforcement.



9 We2A-319-HC775

Forward modeling results

Perform forward inference on random samples in test set

Sample A Sample B
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Objective II: Inverse optimization

Obtain design parameters that correspond to a given spec of 𝑆𝑆11
Objective: ℓ2-norm of the difference between the ideal 𝑆𝑆11 (i.e., 
𝑦𝑦∗) and that delivered by the forward model (i.e., �𝑦𝑦(𝑥𝑥))

�𝑥𝑥 = argmin
𝑥𝑥

�
𝑖𝑖:𝑓𝑓𝑖𝑖∈𝐵𝐵∗

�𝑦𝑦𝑖𝑖(𝑥𝑥) 2 + �
𝑖𝑖:𝑓𝑓𝑖𝑖∉𝐵𝐵∗

�𝑦𝑦𝑖𝑖 𝑥𝑥 − 1 2

where �𝑥𝑥 ≔inverse solution, 𝐵𝐵∗ ≔target band 

Presenter Notes
Presentation Notes
…resulting in minimum possible loss.
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Objective II: Inverse optimization

Presenter Notes
Presentation Notes
The inverse model relies on the pre-trained forward model. After training the forward model, we freeze the CDNet weights and set the design parameters as trainable parameters. We also provide an initial guess of about 100 random sets of design parameters. By backpropagating over the cost function, the CDNet iteratively minimizes the cost function.
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Evaluation metrics
Return loss passband
Region where the 𝑆𝑆11 is lower than -10 dB in the resonant band

𝐵𝐵 = 𝑓𝑓𝐿𝐿, 𝑓𝑓𝐻𝐻 : 𝑆𝑆11 < −10 dB

Intersection-over-Union (IoU)
Percentage overlap between the target band and our prediction 

passband

IoU =
𝐵𝐵∗ ∩ �𝐵𝐵
𝐵𝐵∗ ∪ �𝐵𝐵
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Inverse optimization results
Given a target band 𝐵𝐵∗ = [138, 142] GHz
Optimize to find the design parameters
 �𝑥𝑥 = 𝑊𝑊𝑝𝑝, 𝐿𝐿𝑝𝑝,𝑊𝑊𝑎𝑎,𝑓𝑓 , 𝐿𝐿𝑠𝑠, 𝐿𝐿𝑑𝑑,𝑓𝑓 = 502.7, 789.8, 176.7, 210.3, 340.4 𝜇𝜇𝜇𝜇
Validate with forward design

Presenter Notes
Presentation Notes
Right Fig. illustrates that the algorithm was able to deliver a broadband return loss better than 15 dB and an insertion loss better than 4 dB for an inverse solution for the 12-layer vias in package.
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Performance Summary

Error(dB) =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

20 log10 𝑦𝑦𝑖𝑖 − 20 log10 �𝑦𝑦𝑖𝑖

where 𝑦𝑦 is the ground truth, and �𝑦𝑦 is the prediction

EM simulator: ~617 CPU hours to generate 2500 training data samples
CDNet: ~2.5 seconds to inference 2500 samples

 ~1.8 minutes to train 

Presenter Notes
Presentation Notes
The way we evaluated the error is shown in the formula at the bottom, which is simply the absolute value of the difference between the GT and the pred.
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Conclusion

This research is supported in part by 
NSF I/UCRC Center for Advanced Electronics 

Through Machine Learning (CAEML)

We present both forward and inverse modeling of RF systems using
complex-valued neural networks

Forward modeling gives us a fast prototype of the circuit
Inverse modeling involves finding the best design parameters to generate

a desired response
Surrogate modeling helps in reducing the design cycle time

THANK YOU!
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Surrogate Modeling with 
Complex-valued Neural Nets 

 We predominantly train NNs in the real ℝ domain
 But phase is important too!
 Complex domain ℂ offers a richer set of numbers
 Better data representation

Mapping for complex-valued NNs 𝑔𝑔 𝑧𝑧 : ℂ𝑁𝑁 ↔ ℂ𝑀𝑀
Mapping for real-valued NNs ℎ 𝑧𝑧 : ℝ2𝑁𝑁 ↔ ℝ𝑀𝑀

 Higher functionality 
Weights do not just change amplitude
 Can be rotated too!

Classification capability:  A simple perceptron can only learn linearly separable 
functions
 XOR: linearly non-separable
 Single real-valued neuron fails
 Single complex-valued neuron succeeds

ℐ𝓂𝓂

−1 0 1

𝑗𝑗

−𝑗𝑗

ℂ1 ℛℯ
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Complex building blocks

 Complex convolution
𝑤𝑤 ∗ℂ 𝑧𝑧 = 𝑎𝑎 + 𝑗𝑗𝑗𝑗 ∗ℂ 𝑊𝑊ℐ + 𝑗𝑗𝑊𝑊ℛ

 Complex activation

 tanh 𝑧𝑧 = 𝑒𝑒𝑧𝑧−𝑒𝑒−𝑧𝑧

𝑒𝑒𝑧𝑧+𝑒𝑒−𝑧𝑧

 ℂReLU 𝑧𝑧 = ReLU 𝑎𝑎 + 𝑗𝑗ReLU 𝑗𝑗
 Complex residual block
 Given mapping 𝑇𝑇(𝑧𝑧) from input to output
 𝑅𝑅 𝑧𝑧 = 𝑇𝑇 𝑧𝑧 − 𝑧𝑧 ⟹ 𝑇𝑇 𝑧𝑧 = 𝑅𝑅 𝑧𝑧 + 𝑧𝑧

= 𝑎𝑎 ∗ 𝑊𝑊ℛ − 𝑗𝑗 ∗𝑊𝑊ℐ + 𝑗𝑗 𝑎𝑎 ∗ 𝑊𝑊ℐ + 𝑗𝑗 ∗ 𝑊𝑊ℛ
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Modeling physically consistent response:
Passivity of S-parameters

⋮

⋮

Step 1

Presenter Notes
Presentation Notes
Such that we have a structure-preserving mapping that is bijective.A minimum-phase filter is implemented with minimal computational overhead to enforce the largest singular value of the predicted S-matrix at each frequency point to be less than or equal to 1. This minimum phase filter is added as a non-learnable layer to the CDNet.The term "minimum phase" refers to the fact that the phase response can be uniquely determined from its magnitude response.Having all the poles and zeros of a minimum phase filter inside the unit circle in the complex plane is a fundamental requirement for ensuring the stability and causality of the filter.One important property of minimum phase filters is that they have a causal impulse response, which means that the output of the filter depends only on past and present values of the input signal. This property makes minimum phase filters suitable for real-time signal processing applications where a delay in the output signal is undesirable.
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