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f (GHz)

dSimulating RF front-end modules like antennas is essential for design of
wireless communications

dSimulating their behavior can be computationally and time-intensive
dSize & complexity of the structure

JdFrequency range of interest
dOperating environment

d Designing an antenna involves determining the suitable set of design
parameters that generate the desired output response
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X: DESIGN SPACE / Y: OUTPUT RESPONQ
PARAMETERS
. . —_1 Return loss
geometrical properties, T
dielectric material, . SURROGATE
substrate material MODEL .
— Gain
T /

1 Since Machine Learning (ML) techniques provide good representations
of data

J Build a fast ML-based surrogate model that enables the designers to:
1. Simulate their designs to meet a target spec

2. Obtain the design parameters that correspond to a given spec

IEEE G3Y:5° 7 We2A-319-HC775



IMS 'Example: Design of sub-THz Patch Array—=
Antenna In-package

DIVIDER FEED LENGTH 'y
STUB LENGTH

* Lg .
PATCH ARRAY"! 7 /s _.-.4_ | o
i | 72.5 jim ABF — atches and feeding
D 4 X 4‘ 2D array H I (iéi:mc,?\gﬁer:f}

200umG\ass-’\ e

ARRAY FEED
wipTH |
We,r T W . .
[110,180] Objectives:
Forward modeling FREQUENCY RESPONSE
S.1 from [130.1, 150.05] GHz
7
[660,850] .
parch ienar | Inverse modeling | DESIGN PARAMETERS
b LB " W,Lp, Wa’f,LS,Ld’f
DESIGN SPACE PARAMETERS OF SUB-THZ PATCH ARRAY
Parameter Unit Min Max DATA:
Patch width W, pm 350 660 Q Input design space X € R®
Patch length L, pm 660 850 134
Array Feed width ~ W, fim 110 180 D OUtpUt SPECS YeC
Stub length L, pm 150 250 MODEL:
Divider feed length L ¢ pm 340 450 O CDNet
[*] K. -Q. Huang and M. Swaminathan, "Antennas in Glass Interposer For sub-THz Applications," (ECTC), 2021 > 6 complex dense blocks

IEEE L= : 7 We2A-319-HC775


Presenter Notes
Presentation Notes
Microstrip patch is a low-profile antenna with small height and width, and has applications in 5G/6G wireless technologies.
The patch array shown here is a 4 x 4 2D array.
The stack-up is made up of microstrip structure built on top of glass interposer with a ground plane beneath. 
Data was readily available, so, we decided to use this example, but we could easily replace it with our favorite example.
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Skip Connections ..
P —— e — \_Passivity Enforcer/

CleakyRelU Tanh
DComplex Dense Block Activation Activation
f —-—

CRelLU

| /
|_ S Dropout Network Activation
Wy
” . “Batch Normalization .Complex Addition b a* wy +b * Wg
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Presenter Notes
Presentation Notes
The forward model takes the input parameters of the actual model, propagates the information through a series of building blocks with complex operations and generates the physically consistent complex-valued output response.
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SIMS  Opjective I: Forward modeling

& =

(JObtain a frequency response based on given design parameters

(JCDNet learns the forward mapping between the patch array
design space x and the frequency response y

dTrain with an £,-supervised loss
L =Ey, [Pz — yzll5 + 197 — ysll5]
where y :=predicted 511, y :=actual 514

IEEE TV P P r— We2A-319-HC775
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B IMSModeling physically consistent responsgi
Passivity of S-parameters

JA multiport network is passive if it cannot generate energy

d < S-parameter matrix is unitary bounded, i.e.,

SP(IS(fY<I VfEB

de m?xai(f) <1, i:f;€B
3

JAIll singular values must be bounded by one at all frequencies

JPassivity enforcer is added as the last layer of the NN model

IEEE TV P 4 We2A-319-HC775


Presenter Notes
Presentation Notes
Any energy that is introduced into the network must eventually be dissipated or transported.


IMS Achieving physical consistency ==
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Presenter Notes
Presentation Notes
We illustrate the passivity characterization of the predictions for all tuples in the test set. By enforcing constraints on largest singular values of NN predicted S-parameters, we obtain: (a) CDNet predictions without passivity enforcement. (b) CDNet predictions with passivity enforcement.


|IMS Forward modeling results
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dPerform forward inference on random samples in test set

_— Retsll,predjcted) — I-Sll. predicteo‘l - Im(sl 1,actual) = Isll_ actuall — Retsll,predicted) — Isll, predjctedl -—— I”"n(sl 1,actual) - |511, actua]l
— fm(sll_predicred) ——— Retsll,actual') — ’m(sll_predicted) ——— Re(sll_actual)
-1.0 r w -1.0 . )
130 140 150 130 140 150
f(GHz) f(GHz)
SampleA Sample B
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ideal |S11(f) =1,i: f; € B”

% @W m\//

1S1:(f)| = 0,i: f; € B*

JObtain design parameters that correspond to a given spec of |S;4|

JObjective: £,-norm of the difference between the ideal |S{4] (i.e.,
y*) and that delivered by the forward model (i.e., y(x))

peargmin ) @R+ ) (5] - 1)?
i:f ;EB* i:f i €B*

X

where X :=inverse solution, B* :=target band

IEEE G3Y:5° 4 - We2A-319-HC775


Presenter Notes
Presentation Notes
…resulting in minimum possible loss.
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'MS Objective II: Inverse optimization

ideal 1ISt1(f)|l = 1,i: f; &€ B

Algorithm 1: Inverse optimization

Input: Initialization (?) dom(g), trained model g actual

with the set of all network parameters £, target
band B™, learning rate A

Output: estimated
S )| =0,i: f; € B
for £ =0,1.2, ..., until convergence, do 1511 () fi

:;}I:k} — g(:r(kjﬁﬂ) ﬂ

Ta*E) = PP+ Y (g -1

i:f;eB" i:fi g B

Apk) — _55(?}%} 9% 90
G

| Update: x5+ « 2(F) 1 XAz

IEEE VN M - We2A-319-HC775


Presenter Notes
Presentation Notes
The inverse model relies on the pre-trained forward model. After training the forward model, we freeze the CDNet weights and set the design parameters as trainable parameters. We also provide an initial guess of about 100 random sets of design parameters. By backpropagating over the cost function, the CDNet iteratively minimizes the cost function.


oniIMS Evaluation metrics
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JReturn loss passband
dRegion where the |S;4]| is lower than -10 dB in the resonant band

B = {lfL, fyl: |S11] < —10 dB}

dintersection-over-Union (loU)

(JPercentage overlap between the target band and our prediction
passband

IEEE TV P — We2A-319-HC775
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©0IMS  |nverse optimization results
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Given a target band B* = [138,142] GHz
JOptimize to find the design parameters
Q% ={W,,L,, W, s Ls Ly} ={502.7,789.8,176.7,210.3,340.4} um
(dValidate with forward design

Target band [138,142], Delivered band [139,141]
IOU: 45.0 Return Loss: 19.1db

SEEER
|S11] (dB)

—207 — |s,,] Model predicted
----= |S11]| Ground truth

—— -10dB
Target Pass-band
Model predicted Pass-band

130 140 150
f (GHz)

IEEE G3Y:5° —— We2A-319-HC775



Presenter Notes
Presentation Notes
Right Fig. illustrates that the algorithm was able to deliver a broadband return loss better than 15 dB and an insertion loss better than 4 dB for an inverse solution for the 12-layer vias in package.
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JEM simulator: ~617 CPU hours to generate 2500 training data samples
JCDNet: ~2.5 seconds to inference 2500 samples

[ ~1.8 minutes to train

Table 1. Performance Summary of the Proposed Surrogate Model

Design Frequency Train error Inference error
parameters points (for 2400 samples) (for 100 samples)

5 134 0.641 dB 0.357 dB

N
1
Error(dB) = NZ|2010g10|yi| — 201og |71
i=1

where y is the ground truth, and y is the prediction

We2A-319-HC775


Presenter Notes
Presentation Notes
The way we evaluated the error is shown in the formula at the bottom, which is simply the absolute value of the difference between the GT and the pred.


o IMS Conclusion
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JWe present both forward and inverse modeling of RF systems using
complex-valued neural networks

JForward modeling gives us a fast prototype of the circuit

dInverse modeling involves finding the best design parameters to generate
a desired response

dSurrogate modeling helps in reducing the design cycle time

THANK YOU!

This research is supported in part by
NSF [/UCRC Center for Advanced Electronics
Through Machine Learning (CAEML)
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on IS Surrogate Modeling with
Complex-valued Neural Nets

(d We predominantly train NNs in the real R domain gm |
J But phase is important too! J
d Complex domain C offers a richer set of numbers Ct — .

] Better data representation
3 Mapping for complex-valued NNs g(z): CV & CM
[ Mapping for real-valued NNs h(z): R?Y & RM
 Higher functionality
[ Weights do not just change amplitude
U Can be rotated too!
W Classification capability: A simple perceptron can only learn linearly separable
functions
[ XOR: linearly non-separable
U Single real-valued neuron fails
U Single complex-valued neuron succeeds

IEEE TV P 4 We2A-319-HC775



MWIMS Complex building blocks

 Complex convolution
Qw ¢ z = (a + jb) *¢ (W; + jWg)
=(a*xWiy—b*xW;)+jlaxW;+bx*xWg)

J Complex activation

d tanh(z) = e’ ¢

eZ+e~2

0 CReLU(z) = ReLU(a) + jReLU(b)
J Complex residual block

—Z

1 Given mapping T'(z) from input to output
AQR(z2)=T(z)—z =T(z)=R(2z)+z

IEEE TV P — We2A-319-HC775
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Passivity of S-parameters

Algorithm 1: Passivity enforcement of S-parameters

Input: 5: Predicted complex S-parameter matrix, rn:
Number of ports, B: Frequency band
Output: Sp: Passive S-parameter matrix
1 Reshape S into a batched matrix form for an n-port
network.
2 Transform S into S using isomorphism:

gz{mw; ﬁwq
—3(5) R(S)

sfori: f e Bdo

Step 1
shi & d
s 0 0 0
s O O 0
S0 0 s 0
C

4 Calculate an upper bound for the largest singular
value using:
. P(f) [n-1 Lp
i) =y S+ CIoEEs
where

‘P{.ﬁ] = Z |-§_jj|:fi;||2 and

=1

T

k=1

AMTT-S
NN\

|EEE MICROWAVE THEORY &

Q) =Y [(5*tasu) e (Stasw)] -

Implement minimum-phase filter as:
E(f:) = [S(fo)|e?)

where

| f;l._ {cnlﬁl

@(fi) = s {log [E(fi)]}-

/% #{-} is the Hilbert transform,

for &][fi;l =1
for (fi) <17

operated using a fast Fourier transform
approach. *f

Enforce passivity as:

Sp(f:) = S(f:) ® T(fi).

We2A-319-HC775

<& IEEE
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Presenter Notes
Presentation Notes
Such that we have a structure-preserving mapping that is bijective.
A minimum-phase filter is implemented with minimal computational overhead to enforce the largest singular value of the predicted S-matrix at each frequency point to be less than or equal to 1. This minimum phase filter is added as a non-learnable layer to the CDNet.
The term "minimum phase" refers to the fact that the phase response can be uniquely determined from its magnitude response.
Having all the poles and zeros of a minimum phase filter inside the unit circle in the complex plane is a fundamental requirement for ensuring the stability and causality of the filter.
One important property of minimum phase filters is that they have a causal impulse response, which means that the output of the filter depends only on past and present values of the input signal. This property makes minimum phase filters suitable for real-time signal processing applications where a delay in the output signal is undesirable.


	Slide Number 1
	Motivation
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Modeling physically consistent response:�Passivity of S-parameters
	Achieving physical consistency
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Modeling physically consistent response:�Passivity of S-parameters

