

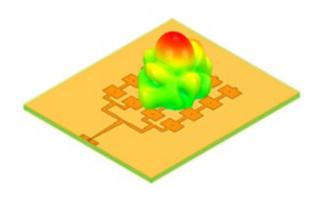
Antenna-in-Package

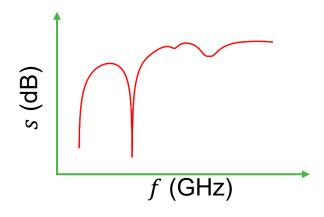
Surrogate Modeling with Complex-valued Neural Nets and its Application to Design of sub-THz Patch

O. Akinwande¹, O. W. Bhatti¹, K.-Q. Huang¹, X. Li¹, and M. Swaminathan^{1,2}

¹Georgia Institute of Technology ²Pennsylvania State University

Motivation



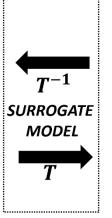


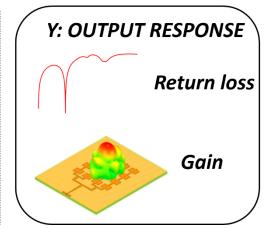
- ☐ Simulating RF front-end modules like antennas is essential for design of wireless communications
- ☐ Simulating their behavior can be computationally and time-intensive
 - ☐Size & complexity of the structure
 - ☐ Frequency range of interest
 - □ Operating environment
- ☐ Designing an antenna involves determining the suitable set of design parameters that generate the desired output response

Objectives

X: DESIGN SPACE
PARAMETERS

geometrical properties, dielectric material, substrate material



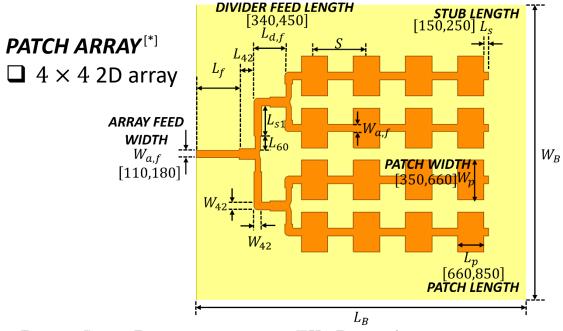


- ☐ Since Machine Learning (ML) techniques provide good representations of data
- \square Build a fast ML-based surrogate model that enables the designers to:
- 1. Simulate their designs to meet a target spec
- 2. Obtain the design parameters that correspond to a given spec

Connecting Minds. Exchanging Ideas.

IMS Example: Design of sub-THz Patch Array

Antenna-in-package



Objectives: FREQUENCY RESPONSE Forward modeling S_{11} from [130.1, 150.05] GHz **DESIGN PARAMETERS** Inverse modeling $W_p, L_p, W_{a,f}, L_s, L_{d,f}$

DESIGN SPACE PARAMETERS OF SUB-THZ PATCH ARRAY

Parameter		\mathbf{Unit}	Min	Max
Patch width	W_p	$\mu\mathrm{m}$	350	660
Patch length	L_p	$\mu\mathrm{m}$	660	850
Array Feed width	$W_{a,f}$	$\mu\mathrm{m}$	110	180
Stub length	L_s	$\mu\mathrm{m}$	150	250
Divider feed length	$L_{d,f}$	$\mu\mathrm{m}$	340	450

[*] K. -Q. Huang and M. Swaminathan, "Antennas in Glass Interposer For sub-THz Applications," (ECTC), 2021

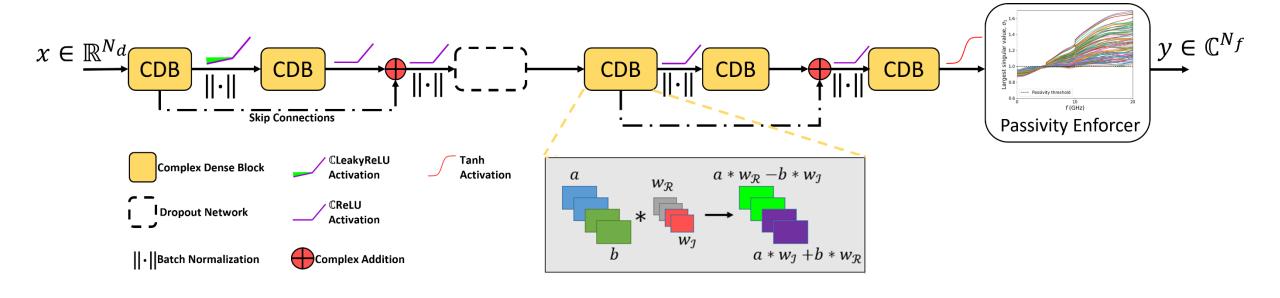
DATA:

- \square Input design space $X \in \mathbb{R}^5$
- \square Output specs $Y \in \mathbb{C}^{134}$

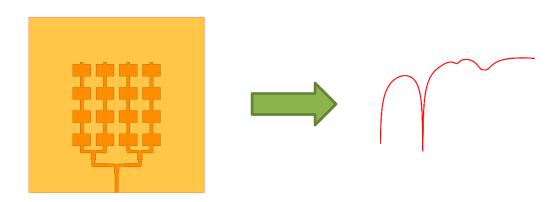
MODEL:

- □ CDNet
 - > 6 complex dense blocks

IMS Surrogate modeling with deep complexities with deep complexities with deep complexities and the surrogate modeling with the surr dense net (CDNet)



Objective I: Forward modeling



- □Obtain a frequency response based on given design parameters
- \square CDNet learns the forward mapping between the patch array design space x and the frequency response y
- \square Train with an ℓ_2 -supervised loss

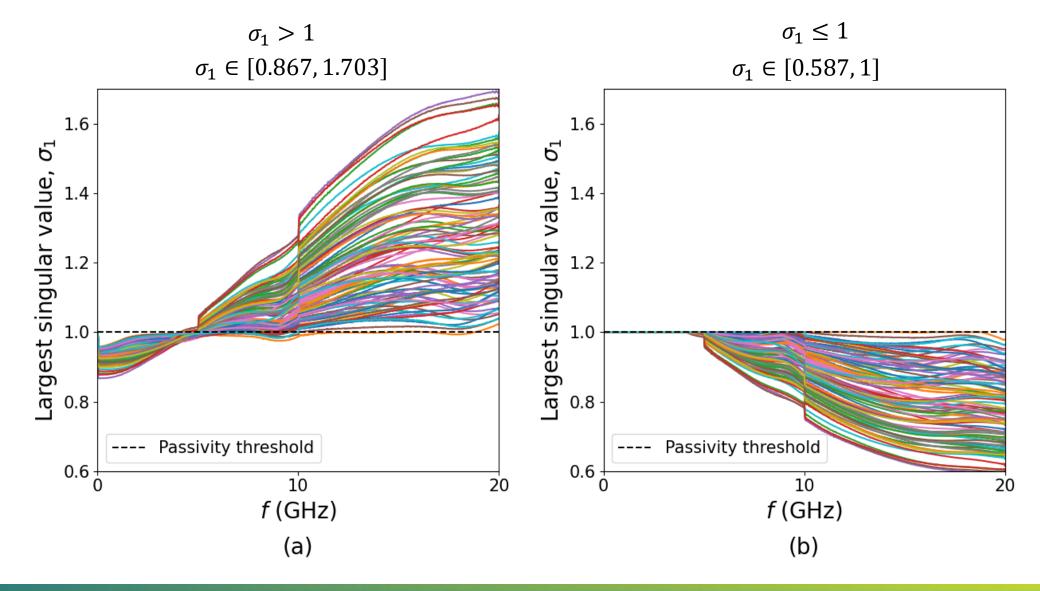
$$\mathcal{L} = \mathbb{E}_{x,y}[\|\hat{y}_{\mathcal{R}} - y_{\mathcal{R}}\|_{2}^{2} + \|\hat{y}_{\mathcal{I}} - y_{\mathcal{I}}\|_{2}^{2}]$$

where $\hat{y} :=$ predicted S_{11} , y :=actual S_{11}

IMS Modeling physically consistent responses Passivity of S-parameters

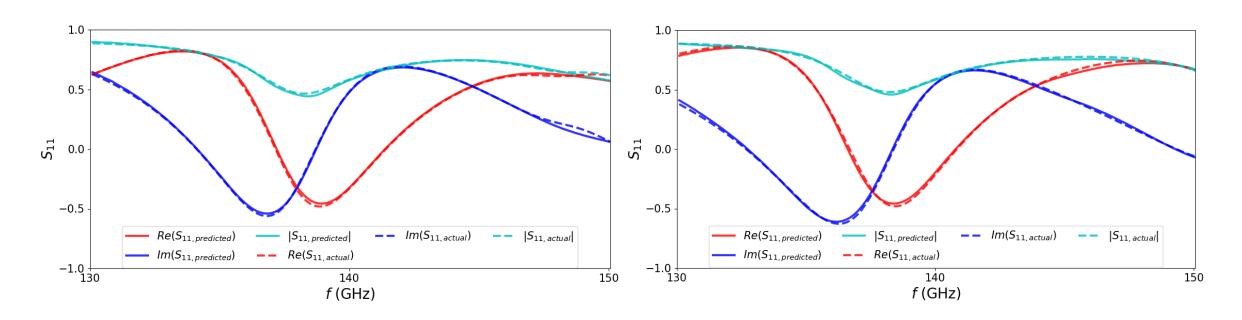
- □A multiport network is passive if it cannot generate energy
- $\square \Leftrightarrow S$ -parameter matrix is unitary bounded, i.e., $S^H(f)S(f) \le I \ \forall f \in B$
- $\sqcup \Leftrightarrow \max_{i,f} \sigma_i(f) \leq 1$, $i: f_i \in B$
- □All singular values must be bounded by one at all frequencies
- ☐ Passivity enforcer is added as the last layer of the NN model

Achieving physical consistency



Forward modeling results

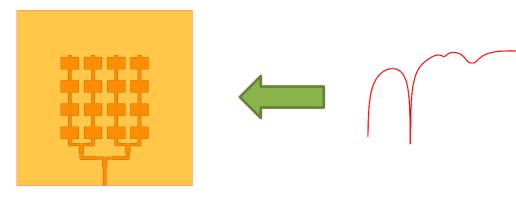
☐ Perform forward inference on random samples in test set

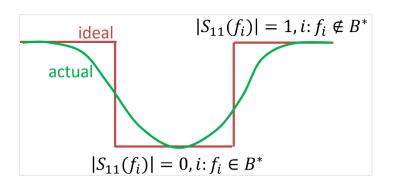


Sample A

Sample B

Objective II: Inverse optimization





- lacktriangleObtain design parameters that correspond to a given spec of $|S_{11}|$
- Dobjective: ℓ_2 -norm of the difference between the ideal $|S_{11}|$ (i.e., y^*) and that delivered by the forward model (i.e., $\hat{y}(x)$)

$$\hat{x} = \underset{x}{\operatorname{argmin}} \sum_{i:f_i \in B^*} |\hat{y}_i(x)|^2 + \sum_{i:f_i \notin B^*} (|\hat{y}_i(x)| - 1)^2$$

where $\hat{x} :=$ inverse solution, $B^* :=$ target band

Objective II: Inverse optimization

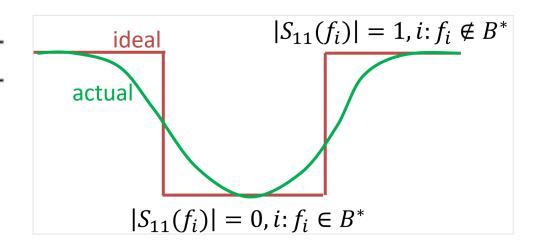
Algorithm 1: Inverse optimization

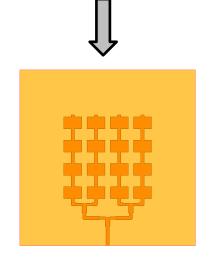
Input: Initialization $x^{(0)} \in dom(g)$, trained model g with the set of all network parameters θ , target band B^* , learning rate λ

Output: estimated x

for k = 0, 1, 2, ..., until convergence, do

$$\begin{split} \hat{y}^{(k)} &= g(x^{(k)}, \theta) \\ \mathcal{J}(\hat{y}^{(k)}) &= \sum_{i:f_i \in B^*} |\hat{y}_i^{(k)}|^2 + \sum_{i:f_i \notin B^*} (|\hat{y}_i^{(k)}| - 1)^2 \\ \Delta x^{(k)} &= -\frac{\partial \mathcal{J}(\hat{y}^{(k)})}{\partial \hat{y}^{(k)}} \frac{\partial \hat{y}^{(k)}}{\partial \theta} \frac{\partial \theta}{\partial x^{(k)}} \\ \text{Update: } x^{(k+1)} \leftarrow x^{(k)} + \lambda \Delta x^{(k)} \end{split}$$





Evaluation metrics

☐ Return loss passband

 \square Region where the $|S_{11}|$ is lower than -10 dB in the resonant band

$$B = \{ [f_L, f_H]: |S_{11}| < -10 \text{ dB} \}$$

- ☐Intersection-over-Union (IoU)
 - ☐ Percentage overlap between the target band and our prediction passband

$$IoU = \frac{B^* \cap \widehat{B}}{B^* \cup \widehat{B}}$$

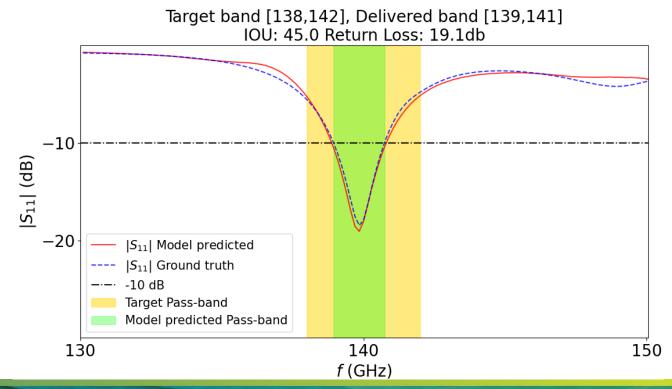
Inverse optimization results

- \square Given a target band $B^* = [138, 142]$ GHz
 - □Optimize to find the design parameters

$$\Box \hat{x} = \{W_p, L_p, W_{a,f}, L_s, L_{d,f}\} = \{502.7, 789.8, 176.7, 210.3, 340.4\} \mu m$$

□ Validate with forward design





Performance Summary

□EM simulator: ~617 CPU hours to generate 2500 training data samples

□CDNet: ~2.5 seconds to inference 2500 samples

□ ~1.8 minutes to train

Table 1. Performance Summary of the Proposed Surrogate Model

Design parameters	Frequency points	Train error (for 2400 samples)	Inference error (for 100 samples)	
5	134	0.641 dB	0.357 dB	

Error(dB) =
$$\frac{1}{N} \sum_{i=1}^{N} |20 \log_{10} |y_i| - 20 \log_{10} |\hat{y}_i||$$

where y is the ground truth, and \hat{y} is the prediction

Conclusion

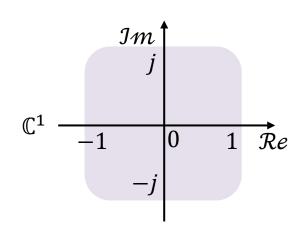
- ☐ We present both forward and inverse modeling of RF systems using complex-valued neural networks
- ☐ Forward modeling gives us a fast prototype of the circuit
- ☐ Inverse modeling involves finding the best design parameters to generate a desired response
- ☐ Surrogate modeling helps in reducing the design cycle time

THANK YOU!

This research is supported in part by NSF I/UCRC Center for Advanced Electronics Through Machine Learning (CAEML)

Surrogate Modeling with Complex-valued Neural Nets

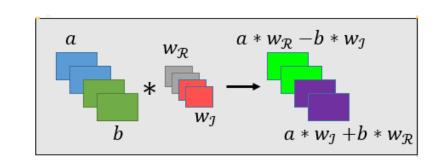
- lacksquare We predominantly train NNs in the real $\mathbb R$ domain
- But phase is important too!
- ☐ Complex domain C offers a richer set of numbers
 - ☐ Better data representation
 - \square Mapping for complex-valued NNs g(z): $\mathbb{C}^N \leftrightarrow \mathbb{C}^M$
 - \square Mapping for real-valued NNs h(z): $\mathbb{R}^{2N} \leftrightarrow \mathbb{R}^{M}$
 - ☐ Higher functionality
 - ☐ Weights do not just change amplitude
 - ☐ Can be rotated too!
 - ☐ Classification capability: A simple perceptron can only learn linearly separable functions
 - ☐ XOR: linearly non-separable
 - ☐ Single real-valued neuron fails
 - ☐ Single complex-valued neuron succeeds



Complex building blocks

☐ Complex convolution

$$\square w *_{\mathbb{C}} z = (a + jb) *_{\mathbb{C}} (W_{\mathcal{I}} + jW_{\mathcal{R}})$$
$$= (a * W_{\mathcal{R}} - b * W_{\mathcal{I}}) + j(a * W_{\mathcal{I}} + b * W_{\mathcal{R}})$$



- ☐ Complex activation
 - $\Box \tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$
 - $\square \mathbb{C} \operatorname{ReLU}(z) = \operatorname{ReLU}(a) + j \operatorname{ReLU}(b)$
- ☐ Complex residual block
 - \Box Given mapping T(z) from input to output
 - $\square R(z) = T(z) z \implies T(z) = R(z) + z$

IMS Modeling physically consistent responses of the connecting Minds. Exchanging Ideas. Modeling physically consistent responses of the connecting Minds. Exchanging Ideas.

Passivity of S-parameters

Algorithm 1: Passivity enforcement of S-parameters

Input: S: Predicted complex S-parameter matrix, n: Number of ports, B: Frequency band

Output: S_P : Passive S-parameter matrix

- 1 Reshape S into a batched matrix form for an n-port network.
- 2 Transform S into \tilde{S} using isomorphism:

$$\tilde{S} = \begin{bmatrix} \Re(S) & \Im(S) \\ -\Im(S) & \Re(S) \end{bmatrix}$$

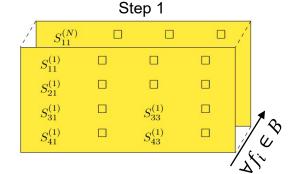
- 3 for $i: f_i \in B$ do
- Calculate an upper bound for the largest singular value using:

$$\hat{\sigma}_1(f_i) = \sqrt{\frac{P(f_i)}{n} + \sqrt{\frac{n-1}{n} \left(Q(f_i) - \frac{P(f_i)^2}{n}\right)}}$$

where

$$P(f_i) = \sum_{j=1}^n |\tilde{S}_{jj}(f_i)|^2$$
 and

$$Q(f_i) = \sum_{j,k=1}^{n} \left[\left(\tilde{S}^*(f_i) \tilde{S}(f_i) \right) \circ \left(\tilde{S}(f_i) \tilde{S}^*(f_i) \right) \right]_{jk}.$$



Implement minimum-phase filter as:

$$\Sigma(f_i) = |\Sigma(f_i)|e^{j\phi(f_i)}$$

where

$$|\Sigma(f_i)| = \begin{cases} \frac{1}{\hat{\sigma}_1(f_i)}, & \text{for } \hat{\sigma}_1(f_i) > 1\\ 1, & \text{for } \hat{\sigma}_1(f_i) \le 1 \end{cases},$$

$$\phi(f_i) = \mathcal{H}\{\log |\Sigma(f_i)|\}.$$

 $/* \mathcal{H}\{\cdot\}$ is the Hilbert transform, operated using a fast Fourier transform approach.

Enforce passivity as:

$$S_P(f_i) = \tilde{S}(f_i) \odot \Sigma(f_i).$$

