

We2B-4

An 80 Gbps QAM-16 PMF Link Using a 130 nm SiGe BiCMOS Process

Frida Strömbeck, Yu Yan, and Herbert Zirath
Chalmers University of Technology,
Gothenburg, Sweden

Outline

- Motivation
- Overview of the Link
- Results
- Comparison with similar work
- Conclusion

Motivation

- Why do we need high data rate short distance communication?
 - Chip-to-chip, module-to-module
 - In-cabin vehicle communication and sensor co-operation
 - Intra-box in base-stations and data centers

Motivation

Why use a polymer microwave fiber (PMF)?

Overview of the PMF Link

- Double-balanced Gilbert cells mixers
- Off-chip LO supplied to 2 cascaded frequency doublers
- Wideband amplifiers
 - 6-stage common emitter (Tx)
 - Balanced 2-stage cascode (Rx)
- Off-chip LO supplied to 2 cascaded frequency doublers
- 2- and 4-meter foam-cladded PMF with a 2.1 mm x 1.2 mm rectangular PTFE core (H+S)

Layout of Tx and Rx

130 nm SiGe BiCMOS process by Infineon

 f_t/f_{max} of 250/370 GHz

IMS Frequency domain measurements

Link measurement setup

- On-wafer using 2 probe stations
- Data provided by an AWG to Tx
 - Direct modulation
- Output from Rx captured by an oscilloscope
- 2- and 4-meter long PMF connecting the Tx and Rx RF probes through a waveguide adaptor

Measurement setup limited to 18 GHz bandwidth for data due to cables and probes

IMS 2 meter PMF link demonstration

LO at 148 GHz 24 Gbd = 48 Gbps**QPSK** BER<10⁻¹²

LO at 148 GHz 20 Gbd = 80 Gbps**QAM-16** BER=8x10⁻⁴

Received eye diagram and I/Q constellation

4 meter PMF link demonstration

Received eye diagram and I/Q constellation

LO at 148 GHz 5 Gbd = 10 GbpsQPSK BER< 10^{-12}

LO at 148 GHz 12 Gbd = 24 GbpsQPSK BER= 8×10^{-6}

Comparison with similar work

Table 1. Comparison with other D-band PMF links, with BER $< 10^{-12}$.

Reference	[4]	[5]	[7]	[this work]
Technology	28 nm	28 nm	250 nm	130 nm
	CMOS	CMOS	InP DHBT	BiCMOS
Modulation	CP-FSK	ASK	PAM-2	QPSK
Frequency	140	135	131	148
(GHz)				
Data Rate	12	27	30	48
(Gbps)				
Fiber	1.0	1.0	1.0	2.0
Length (m)				
Total chip	2.31	1.94	0.83	4.2
area (mm ²)				
Peak output	6	-3	3	5
power (dBm)				

- [4] M. De Wit, Y. Zhang, P. Reynaert, "Analysis and Design of a Foam-Cladded PMF Link With Phase Tuning in 28-nm CMOS", *IEEE Journal of solid-state circuits*, vol. 54, no. 7, pp. 1960-1969, July 2019.
- [5] K. Dens, J. Vaes, S. Ooms, M. Wagner and P. Reynaert, "A PAM4 Dielectric Waveguide Link in 28 nm CMOS", ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), pp. 479-482, 2021.
- [7] F. Strömbeck, M. Bao, Z. S. He, and H. Zirath, "Transmitter and Receiver Circuits for a High-Speed Polymer Fiber-Based PAM-4 Communication Link", Sensors, vol. 22, no. 17.

Conclusion

 A high data rate short distance PMF link at D-band in 130 nm SiGe BiCMOS

- Highest error free (BER<10⁻¹²) data rate demonstrated compared to other D-band PMF links (48 Gbps)
- 4-meter PMF link demonstrated with 10 Gbps error free

