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Importance of PA Efficiency in Array-Based 

Systems

➢ Ever-Increasing Demands for Higher Data Rate
• Higher modulation order → 1024QAM
• Wider instantaneous BW → OFDM needed
• More stringent linearity requirement for PA

PAPR: 3G – 5G Evolution

5G (NR Sub-6GHz)

>10dB PAPR (>10:1)4G (LTE/OFDM)
8.5 dB PAPR (~7:1)

3G (W-CDMA) 
3.5dB PAPR (~2:1)

>11dB
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❑ ANT impedance mismatch due to mutual coupling

❑ ZANT depends on both scan angel and element location

New Challenge for PAs in Antenna Array

Azimuth

Elevation

PA
ANT𝑎ij

𝑏ij
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❑ At system level: Main-Beam Distortion

❑ Spectrum eff. vastly degraded, invalidating the purpose of mMIMO

New Challenge for PAs in Antenna Array
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❑ 3-way-Doherty-like combination of BA1, BA2, and CA, 

❑ Developed from the generic LMBA by sequentially turning on BA1 and 
BA2

H-ALMBA Architecture
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❑ Principle analysis operation divided into 3 regions

❑ LBO is determined by saturation power of CA and threshold of BA1.

❑ HBO is determined by the threshold of BA2.

Operation of H-ALMBA
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❑ Three-way load modulation based on 90°coupler, no efficiency drop

❑ ≥10 dB power back-off range achieved with proper amplitude control

❑ Nearly unlimited bandwidth inherited from PD-LMBA

Advantage of H-ALMBA

10.5-dB PAPR

PD-LMBA ❑ How to make the H-ALMBA has 
high linearity and keep high 
efficiency under mismatch with 
wide bandwidth?
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❑ AMAM Linearization: BA1 and BA2 can be turned on earlier to avoid 
compression.

❑ AMPM Linearization: Tunable phase offset between CA and BA.

High-Linearity Design of H-ALMBA

AMPM

DEAMAM
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❑ BAs turn off with CA solely operation

❑ Load-dependent 𝑉DD,CA

Reconfiguration for Mismatch Resilience

In Low Power Region
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❑ BA1 turns on, BA2 remains off, and BA1 and CA cooperate like a DPA

❑ CA works as a voltage source (VS)

Reconfiguration for Mismatch Resilience

In Doherty Region When 𝒛𝐋 <𝟏
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❑ BA2 turns on, BA1 remains off, and BA2 and CA cooperate like a DPA

❑ CA works as a current source (CS)

Reconfiguration for Mismatch Resilience

In Doherty Region When 𝒛𝐋 >𝟏
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❑ BA1 or BA2 turns on depends on load condition 

❑ CA CS-VS duality 

Reconfiguration for Mismatch Resilience

In Doherty Region

VSWR 2:1
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❑ BA1 and BA2 both turn on at secondary peaking, and saturate simultaneously 
with CA at maximum power.

❑ BA1 and BA2 remain balanced at AlMBA region and complement each other.

Reconfiguration for Mismatch Resilience

In ALMBA Region
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Overall Simulation Result

AMAM
AMPM
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❑ Efficiency and linearity can both be maintained against 2 : 1 VSWR with 
the proposed 𝒁𝐋-Optimal biasing
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Hardware Demonstration
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Measurement Set Up

Load Tuners
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CW Measurement Results @ Z0

AMPM

AMAM

DE

❑ Max DE of 57%−73%, 10-dB OBO DE of 43.2%−52.8% and saturated out put 
power of 42−43 dBm at 1.7, 2.2 and 2.6 GHz

❑ AMAM< 4.5-dB and AMPM < 6.5°
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Modulated Measurement Results @ Z0

Frequency Offset (GHz) Frequency Offset (GHz)

P
o

w
e
r 

(d
B

m
)

1.8 GHz 2.6 GHz

❑ Modulated measurement using 256 QAM LTE signal with 20-MHz bandwidth 
and 10.5-dB PAPR

❑ Average efficiency of 41.8%−52.4% and a best ACPR of -38.9 dBc and 3% of EVM 
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❑ Linearity of H-ALMBA is devastated with load mismatch 

Modulated Measurement Results at 2.6 GHz

𝒁𝐋 = 0.5𝒁𝟎

𝒁𝐋-Optimal 
Biasing

𝒁𝐋 = 𝒁𝟎 𝒁𝐋 = 0.5𝒁𝟎

Same Biasing
as 𝐙𝐋= 𝐙𝟎

EVM = 49.2% EVM = 3.7% EVM =3.5% 

❑ EVM can be perfectly recovered through the proposed biasing reconfiguration
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❑ Six represented load on 2:1 VSWR circle are 

selected to evaluate the mismatch recovery

Modulated Measurement Results @ 2:1 VSWR

at 2.6 GHz

VSWR 2:1

Z0

❑ A low EVM and high efficiency can both be 
experimentally maintained breconfiguration
against VSWR
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Conclusion

❑ A wideband and linear three-way load modulation PA in H-ALMBA topology 
with mismatch resilience is achieved with reconfigured turning-on sequence 
of Bas

❑ Resolving the non-linearity caused by CA overdrive, thus improving the 
overall linearity and reliability

❑ Maximized efficiency across extended dynamic power range

❑ Excellent linearity and efficiency recovery  with proposed reconfiguration to 
arbitrary load mismatch.
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Thank You !
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