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Applications & Requirements

• High-Speed Communication

• Automotive Radar 

• Wireless Power Transmission

Requirements

• Low loss

• Wide Bandwidth

• High Integration Density

Emerging Applications [1],[2]
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Technology Options

Rectangular Waveguide (Non-planar)

Printed Circuit Board (Planar)

• Low insertion loss

• High Q factor

• Self Shielded

• High power handling

• Expensive

• Difficult Integration

• Heavy

• Tedious to produce

• Low Cost

• Easy Integration

• Light Weight

• Standard Production

• High insertion loss

• Low Q factor

• Not Shielded

• Low power handling
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Technology Options
SIW AFSIW [4]-[6]

• Low Cost

• Easy Integration

• Self Shielded

• Compact

• Light Weight

• Medium 

Insertion Loss

• Medium Q Factor

• Medium Power 

Handling

• Low Cost

• Easy Integration

• Light Weight

• Standard Production

• Low Insertion loss

• High Q Factor 

• High Power Handling

• Less Compact
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Transition Needs and Challenges

• Frequency Extenders

• Anechoic Chamber

• Radar Systems

Why Transition? [3]

Challenges Involved

• Low insertion loss

• Wide Bandwidth

• Design Flow
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AFSIW Structure

AFSIW structure with discontinuous electric walls [10],[11]

w1

W

h

Air Dielectric Copper

w1

A High degree of design flexibility for next-generation radio circuits at a low cost
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Various Configurations

Each configuration is decided by the aperture size of RWG and AFSIW
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Taper Out - Top View Taper In – Side View

𝐿1 = 8.293 × 𝑒−0.01881×𝑓𝑐

(L1) is critical design parameter and varies with cutoff Frequency (fc)
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Design Flow

Start

Evaluate Parameter:
Aperture of AFSIW (Wf and h) and 

Waveguide Aperture (a and b)

Taper in / out Wf Taper in / outh

Taper out TransitionTaper in Transition

Wf > aWf < a

Taper in TransitionTaper out Transition

h < bh > b
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Simulation Results

Back-to-Back Transition
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Simulation Results

Transmission System
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Measurement Results

Prototype
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Performance Comparison

As evident from earlier reported work, the paper presents a 

simple transition design, along with improved performances

Ref. Transition Structure S11 (dB) S21 (dB) 10-dB BW (GHz)

[10] RWG-SIW -10 >-0.58 50.5-75.3

[11] SIW-RWG -10 >-0.50 47.2 to 77.5 

[12] SIW-RWG -10 >-0.40 40-65

[This Work] RWG-AFSIW -10 >-0.35 50-75
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Conclusion

• A generalized transition design approach from RWG to AFSIW is presented, and its

transition length is analytically determined, which balances the impedance

matching and insertion loss.

• The measured S11 <-10 dB and S21>-0.35 dB over 50-75 GHz are achieved, which

are in close agreement with simulated results, demonstrating the superiority of the

developed transition.

• The advantages of extremely low insertion loss, low cost, and improved power

handling capacity are the attractive features of the proposed transition to develop

next-generation mm-Wave wireless systems.
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Questions?

Thanks for joining !
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