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Outline

qBackground Introduction

qSub-Terahertz SIW Design
Ø Substrate Integrated Waveguide
Ø CSRR Loaded HMSIW Interconnect Design
Ø Measurements Results

qSummary
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Introduction

Increase in high-volume telecommunications
⇛ Explosive increase in data traffic volume
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Frequency Band and its Application
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Resonators in Wireless Communication
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Resonators play an important role in wireless communications
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o Signal propagates reflecting
inside the dielectric,→ thickness
of the metal is irrelevant.

o Low radiation loss due to
confinement and propagation
within metal walls

§ Performance varies with
metal thickness.

§ Radiation loss increases
at higher frequencies. →
wavelength becomes
very small.

Conventional Microstrip Line

SIW has lower
attenuation than
conventional
transmission lines

[Ref] M. Bozzi, L. Perregrini, and Ke Wu, “Modeling of losses in substrate integrated waveguide by
Boundary Integral-Resonant Mode Expansion method,” in 2008 IEEE MTT-S International Microwave
Symposium Digest, Atlanta, GA, USA, 2008, pp. 515–518.

Comparison of SIW with other 
transmission lines

metal dielectric

Metal ViaSIW

Substrate Integrated Waveguide (SIW)
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SIW Cavity Resonator

Frequency

• Resonant at limited TE mode 
frequencies

• Operates as a resonator with low 
unwanted radiation with unique 
cutoff frequency

• Easy to realize with planar circuits
• Occupies a large area

Resonant frequency of TE_pqr mode ︓

𝑓!"#!"# =
1

2𝜋 𝜀𝜇
𝑝𝜋
𝐿

$
+

𝑞𝜋
ℎ

$
+

𝑟𝜋
𝑊

$

Full-Mode SIW

dielectric

Top metal

GND

W
L

h

via



8 We2F-3

Background Summary

• Expectations for high-frequency devices capable of supporting
increasingly sophisticated wireless communications

• Low-loss circuits using SIW technology
Background

SIW circuits require extensive occupancy areaProblem

Miniaturization of high-frequency SIW circuits using CMOS
→Leads to realization of high performance and compact high-

frequency circuits
Target
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Process Used → Commercial 1P6M 
CMOS

Si

SiO2

Cu

・
・
・
・

M1
M2
M3
M4
M5
M6

Low cost compared to 
modern processes

Poor performance in the 
high-frequency band

Advantage Disadvantage
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SIW Miniaturization Techniques

Area 100%
ARR = 0% Area 25%

ARR = 75%

Through Via Blind Via
Top Bottom Metal Layer

Folded Ridge Metal Layer

Area 2.4%
ARR = 97.6%

Area 2.46%
ARR = 97.55%

Magnetic Walls

Fig. SIW cavity: (a) standard mode; (b) QMSIW; (c) folded ridge QMSIW; (d) folded ridge QMSIW with
CSRR loadings. *ARR = Area Reduction Ratio compared to standard SIW at the same resonance.

(a) (b) (c) (d)
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SIW Miniaturization Techniques

Fig. (a) Folded ridge QMSIW with CSRR loadings, (b) Equivalent Circuit, and (c) Variations of
resonance frequency and return loss magnitude with varying ridge width.
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VIAS effect in the Cavity Design

Fig. Effect of square via size (side length) and via spacing of folded ridge QMSIW cavity on: (a)
resonance frequency; (b) reflection coefficient; (c) Total radiation efficiency of folded ridge QMSIW
cavity with CSRR loading with varying via spacing.
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Fabrication Layout of the Proposed 
Cavity Resonator

Fig. a. Proposed SIW Cavity Resonator
Micrograph of fabricated prototype. EM model
of the proposed folded ridge QMSIW cavity. (a)
3D view; (b) top view; (c) side view
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1000 µm

300 µm
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Fabrication Layout of the Proposed 
Cavity Resonator

Fig. Proposed QMSIW Cavity Resonator (a) Micrograph of fabricated prototype; (b) Simulated and
Measured S-parameters; (c) Measurement results of frequency and external quality factor.
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Fabrication Layout of the Proposed 
Cavity Resonator

Fig. Fig. Proposed QMSIW Cavity Resonator with CSRR loadings (a) Micrograph of fabricated
prototype; (b) Simulated and Measured S-parameters; (c) Measurement results of frequency and
external quality factor.
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Summary
q Miniaturized Sub-Terahertz Band SIW cavity resonator is achieved by:
Ø Taking quarter-mode of standard SIW cavity resonator
Ø Employing folded ridge structure
Ø Inductively loaded with CSRR resonator.

q The proposed design is fabricated in a commercial CMOS technology.
q The internal matching provided by the effective inductance from the CSRR at

the resonance in the proposed SIW cavity resonator presents both the
reflection coefficient and the Q-factor improvement.

q The proposed SIW cavities resonator utilizes only 2.46 % and 2.4 % area of the
standard SIW designed at the same resonance.

q This miniaturized Cavity Resonator can find applications for designing high
performance on-chip filters, antennas, oscillators, etc.
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Thank you for your attention.

Samundra K. Thapa: thapa.samundra.391@s.kyushu-u.ac.jp;
Ramesh K. Pokharel: pokharel@ed.kyushu-u.ac.jp;

Adel Barakat:  barakat@ed.kyushu-u.ac.jp
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