

We2G-1

A Compact 140-GHz Radar MMIC with I-Q Downconverter in SiGe BiCMOS Technology

1. Kraus^{1,2}, H. Knapp², D. Reiter^{1,2}, N. Pohl^{1,3}

¹Ruhr University Bochum, Bochum, Germany

²Infineon Technologies AG, Neubiberg, Germany

³Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, Wachtberg, Germany

Presentation Outline

- Monostatic Doppler Radar
- I/Q Diode Mixer
- Circuit Realization
- Measurement and Results
- Concept Comparison
- Summary and Outlook

Monostatic Doppler Radar

Continuous wave radar:

Permanent transmission of RF signal with constant frequency

Conventional monostatic radar:

- One antenna for both transmitted and received signal
- Typically requires coupler to seperate RX/TX paths

I/Q Mixer realization:

- Allows to obtain phase information
- Typically realized by 90-deg coupler

Monostatic Doppler Radar

D-band Doppler Radar:

- D-band frequencies (110 to 170 GHz) increasingly relevant for radar systems
- Doppler radar: $f_D = \frac{2v_r}{\lambda} \sim f_{TX}$ with $\lambda = \frac{c}{f_{TX}}$
- Compact Doppler sensor realization:
 - monostatic structure (single RX/TX antenna)
 - low current consumption (passive mixer)

Monostatic Doppler Radar

Conventional Diode Mixer Topology

- No dedicated ratrace coupler for monostatic radar system
 - Enables better SNR
 - Enables compact layout realization

 No phase information, redundant baseband signals

I/Q Diode Mixer

Adaptions for I/Q output:

- Shifted λ/8 lines added
 - result in relative 90° shift for baseband signals
 - I/Q signal at baseband output provides additional phase information
- Differential output signal to antenna not affected

I/Q Diode Mixer

- Transistors T1, T2 as mixing diodes
 - small bias current through diodes
- λ/4 lines TL3, TL4 transform
 RF short (C1, C2) into open
- Stub lines TL9, TL10
 - compensate parasitic pad capacitance
 - provide return path for mixer bias current diodes

I/Q Diode Mixer

•
$$s_{LO1}(t) = cos(2\pi f_0 t + \varphi_0)$$

•
$$s_{LO2}(t) = cos\left(2\pi f_0 t + \varphi_0 - \pi - \frac{\pi}{4}\right)$$

•
$$s_{R1}(t) = cos\left(2\pi(f_0 \pm f_D)t + \varphi_{RX} - \frac{\pi}{4}\right)$$

•
$$s_{R2}(t) = cos(2\pi(f_0 \pm f_D)t + \varphi_{RX} - \pi)$$

- Phase shift due to differential signal
- Phase shift due to shifted $\lambda/8$ lines

Baseband output:

$$\Delta \varphi = \pm \frac{\pi}{2}$$

Circuit Realization

- Circuit realized with on-chip Dband VCO
- Infineon's 130nm SiGe BiCMOS process B11HFC
- fT/fmax = 250 GHz/370 GHz
- 800×1160µm² (including pads)

Measurement and Results

Transmitted Power over Temperature

- Diode insertion loss ≈ 2,5 dB
- Moderate decrease of output power at 125°C
- Transceiver remains functional at temperatures > 200°C (sufficient output power for meaningful Doppler measurements)

Measurement and Results

Moving Target with Constant Radial Velocity

- Radial velocity 0.11 m/s
- Transient voltage signals with consistent phase shift (no change in direction)
- Doppler spectrum shows corresponding peak at 102 Hz

Measurement and Results

Moving Target with Periodically Oscillating Radial Velocity

Corner Reflector mounted on pendulum, oscillating in radial direction to antenna

Concept Comparison

	[9]	[10]	[5]	This Work
Frequency	160 GHz*	122 GHz*	144.6-	136-146 GHz
Range			160 GHz	
RF Channels	2x1 RX/TX	2 RX, 1 TX	1 RX/TX	1 RX/TX
	(monostatic, with		(monostatic)	(monostatic)
	rat race coupler)			
RX Mixer	Gilbert-cell	Gilbert-cell	diode-based	diode-based (IQ
	(IQ output)	(IQ output)		output)
IQ Realization	90-degree coupler	90-degree coupler	n/a	shifted diodes/
	(branchline)			t-lines
TX Signal	external LO with on-	external LO with on-	on-chip	on-chip
Generation	chip PA	chip PA	power VCO	power VCO

^{*} center frequency (external LO input)

Summary and Outlook

Summary:

- Compact monostatic D-band Doppler transceiver
- No 90-deg coupler needed for I/Q, no Ratrace coupler needed for RX/TX separation
- System still working at temperatures > 150°C

Outlook:

- On-chip VCO allows FMCW radar operation
- Adjustable diode current possibly allows tradeoff of NF and P_{out}

