

We2G-3

An Active Self-Interference Cancellation Coupler with 60 dB Isolation Applied in a 24 GHz SFCW Radar

Patrick Fenske, Tobias Kögel, Andre Scheder, Konstantin Root, Christian Carlowitz, Martin Vossiek

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

- Self-interference in SFCW radars
- Design considerations
- Calibration and characterization
- Measurement results
- Summary

- Self-interference in SFCW radars
- Design considerations
- Calibration and characterization
- Measurement results
- Summary

Sources of Self-Interference

- Antennas:
 - Input mismatch (monostatic)
 - Coupling (bistatic)

- PCB:
 - Non-perfect isolation
 - Coupling between microstrip

lines

Receiver Desensitization

Theory:

Polynomial approximation

$$v_{\text{out}}(v_{\text{in}}) = a_1 v_{\text{in}} + a_3 v_{\text{in}}^3$$

Gain compression

$$v_{\text{leak,out}} \approx a_1 \cdot v_{\text{leak,in}} \left[1 + \frac{3a_3}{4a_1} v_{\text{leak,in}}^2 \right]$$

Desensitization

$$v_{\mathrm{Rx,out}} \approx a_1 \cdot v_{\mathrm{Rx,in}} \left[1 + \frac{3a_3}{2a_1} v_{\mathrm{leak,in}}^2 \right]$$

LNA Desensitization

$$P_{\rm Rx} = -50 \, \rm dBm$$

$$f_0 = 24 \, \text{GHz}$$

$$\Delta f = 1 \text{ MHz}$$

Mixer Desensitization

$$P_{\rm Rx} = -50 \, \rm dBm$$

$$f_0 = 24 \, \text{GHz}$$

$$\Delta f = 1 \text{ MHz}$$

$$P_{LO} = +10 \text{ dBm}$$

$$P_{\text{Leak,Mix}} = \{-4, 5, 8, 10\} \text{ dBm}$$

Receiver Desensitization

- Consequences for our monostatic radar
 - Measure leakage power
 - Simulate desensitized gain

- Self-interference in SFCW radars
- Design considerations
- Calibration and characterization
- Measurement results
- Summary

Possible Techniques

	Insertion Loss	Noise Figure	Power Consumption	Component Availability	Setting Range	Linearity	Design Effort
Impedance tuner	+	+	+	-	-	-	-
Vector modulator	-	-	-	+	+	+	+

Realized Design

- Self-interference in SFCW radars
- Design considerations
- Calibration and characterization
- Measurement results
- Summary

Pre-calibration

- $P_{\text{Tx}} = 10 \text{ dBm}$
- Iterative grid search for each frequency

Isolation Measurements

- Optimized IQ currents for $f = 22 \dots 25 \ GHz$
- Verification with time offset (2 days)

Isolation over Temperature

- Calibrated at 20 °C (68 °F) Constant rel. humidity $\approx 50 \%$

• f = 24 GHz

Noise Figure

- Measured with Y-factor method (R&S FSW43)
- Passive NF in accordance with insertion loss

- Self-interference in SFCW radars
- Design considerations
- Calibration and characterization
- Measurement results
- Summary

SFCW Recap

- Sampling the scene with stepped CW signals
- Information carried by complex phasor at DC

SFCW Measurement Results

Setup:

- $-f_n = 23 \dots 24.25 \text{ GHz}$
- $-\Delta f = 5 \text{ MHz} \rightarrow R_{\text{max}} \approx 30 \text{ m}$
- $T_{\text{meas},n} = 10 \text{ ms}$
- $-P_{Tx} = 10 \text{ dBm}$
- Target: metal rod
 - $d_1 = 2.56 \text{ m}$
 - $d_2 = 0.40 \text{ m}$

Target

SFCW Measurement Results

SFCW Measurement Results

- Self-interference in SFCW radars
- Design considerations
- Calibration and characterization
- Measurement results
- Summary

Summary

- What should we take from the presentation
 - Self-interference may affect receiver gain
 - System concepts of SICC
 - Environmental influence on calibration
 - Degradation of rx noise figure
 - Usability depends on radar scenario (NF $\leftrightarrow G_{Rx}$)

Summary

- What needs to be evaluated?
 - Adaptive cancellation control between radar measurements
 - Quantitative measure of SICC usability
 - Extend for usage in FMCW radars
 - Account for degradation of receiver linearity due to self-interference

