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Long range (>1km)

—

Touchless human computer in-door positioning and navigation Non-contact vital sign detection

interaction
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In a common FMCW radar, the IF signal, also known as the beat signal, can be modeled as

follows:
sp(t) = Aexp<] (‘mBR t + AT/ cR CR)>,t€ [§,§], (1) DTi:t;gr?ée
/N||||||§||§|||||||| L1
Notice two important components in (1): e | W[ TTTT] | || T T 111 ] 1]
1)The frequency component also known as the beat frequency s :
fo = 2BR/Tc Pl T[] ETTTTTTT] L]
dEHEEERs N IEEEEEEE L1
2) The phase item ¢ = 4nf.R/c. tf PPl B[] L1
1 2 3 45 Mo .
The target distance R can be derived from the beat frequency, Distance
which is usually estimated with FFT. o _
Limited frequency resolution limited accuracy
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Zero-padded FFT mmms)  Large computer resource consumption =) Not suitable for Embedded device

- . - Target
different interpolation methods [1-2] . Distance

NCLT PP B PP PPl L]
el L et L

=) Interpolation between the discrete points

Slow time

w===) Introduce new error / the frequency resolution is still limited

s LI BT T T T]
JEHEEERS N IEEEEEEE
oL PP e PP

chirp z-transform (CZT)-based technique [3]

L1 ]
L1 ]
1]
M

wssm) Further CZT in the concerned frequency band

==m=) the frequency resolution is still limited and the efficiency is still low when high resolution required

This work
mmm) Phase Differentiation and Accumulation (PDA) within one chirp

= Frequency resolution free/ high efficiency of O(Nlog(N/3))
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As discussed previously, the IF signal of a common f
FMCW radar is follows: fo+B

sp(t)= Aexp <] (4”BR t + 4”fcR)>,t e [5,1], (1)

272 |
fo+ B/M | ' !
fo 11 2 M
The distance is usually estimated through the frequency l N/M l 2NM - N(M-1)/M l N n
components f, = 2BR/Tc. b o b
However, estimation of f;, suffers from limited frequency Ao e L APus
resolution. A high frequency resolution leads to large Eq, Ry
computer resource consumption, making it unsuitable for \Ig/

embedded device.

On the other hand, there is another phase components ¢ = 4rf.R/c in (1). Estimation of ¢ is frequency
resolution free but it suffers from phase ambiguity.

MTT-S
I E E E IEEE MICROWAVE THEORY & <We2G>-<5>
4 TECHNOLOGY SOCIETY




onIMS Theory and analysis

Connecting Minds. Exchanging Ideas.

This work combines the frequency and phase components
and thus realizes a high efficient and frequency resolution
free distance measurement technique. It is detailed as
follows:

1) The sampled beat signal of one chirp has a length of N.

Divide the chirp into M segments. Each segment can
be seen as a sub-chirp with bandwidth being Af =
B/M and center frequency being f.,,, = fo + Bm/M,

Cc

m=1~M. Thus, its distance resolution is AR = Y,

2) Perform non-zero-padded FFT on each segment to get
the spectra F,,[k], k=1~N/M, m=1~M. The distance
between two adjacent points of F,,[k] is AR. Find the
target peak’s location of kj. The target distance can be
coarsely estimated to be R = AR - k.
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fo+B

fo + B/M
fo

2 M

1! |
l N/M l 2N/M N(M-1)/M l N

®, ®, o
—— ——
Ap, Ap, Ag,,.,
N N J
R, Ry
L
R
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3) Extract the phase of E,,[k;] to get ¢,, = arg(E,[ks]). f
m=1~M. The adjacent phase difference is (m=1~M-1): fo+B i
Pm+1 — Pm» Pm+1 > Pm i i
Ap,, = : 2 | |
Pm {§0m+1 + 27 — Oy Pmr1 < P, 2) | | i
f0+B/M """"""""""""" T : I I
fo 11 2 ! LM
N/M 2N/M N(M-1)/M N
4) Accumulate the phase difference to get: Ap = Ap, + l l - l !
A(pz + ee AQDM—l = QDM - (pl + p * 27T ) Where p |S the (p1 (pz (pM
number of 2m that is added in A, ~A@,,_,. Therefore, the Ao, Do, A,
fine distance with ambiguity can be estimated to be: R, = . v / p
cA@ /ATt (Fopy — for)= cA@/Am(M — 1)Af. This is similar o
to the FSK CW radar with the lower frequency being f.4, R

the upper frequency being f.;, and unambiguous phase
range being 0~2z(M-1). Therefore, the unambiguous range
of R, Is O~c/2Af, which is the same as the distance

resolution AR.
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5) The absolute fine distance can then be estimated with f
the combination of Rr and R, fo+B

R + Ry, Fylko + 1] = Eylko — 1]

R = _ 3 |
Rs+ R, — AR, E, ko + 1] < Eplko — 1] ) fot Bﬁf iy M
l N/M l 2N/M N(M—l)/Ml N n
Since R, Is not frequency resolution limited, the distance R o " o
estimated with the proposed technique is not frequency T A T
resolution limited. ot e T
R Ry
%
H_/
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Noise analysis

The fine distance is estimated as R, = c(@y — @1 + p - 2m) /4 (M — 1)Af, which means the proposed

technique’s accuracy is directly related to ¢,, and ¢4. The variance of the phase item ¢,,, under an SNR of )
IS:

Var(e,,) = 77%1 (4)

where N; = N/M is the segment length. Therefore, the variance of A Is:
Var(8g) = Var(pw) + Var(p) = . (5)

Thus, the variance of the R, IS

c2 _ 2 (6)
(4m)2B%(1-N1/N)? 7Ny’

Var(R(p) =
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Noise analysis

It can be seen from (6) that Var(R,,) varies with Ny. With simple analysis, it can be found that the minimum
Var(R,) is obtained when Ny = N /3, which means M=3. The minimum Var(R,,) can then be derived as:

272
Var(Rq,) = 320N B (7)

which is close to the CRLB of the conventional frequency estimation method [4]:

24¢2
Var(R) = 32712;NBZ' (8)

Moreover, with M=3, only 3 N/3-points FFT is needed in the proposed technique, which means the time
complexity of the proposed technique is only O(Nlog(N/3)). This is even smaller than the original non-zero-
padded FFT’s time complexity of O(Nlog(N)).
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Simulations are carried out in MATLAB to validate the \, ca84mm this work
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Gaussian noise is added to the IF signal with the awgn() 2 10°
function in MATLAB. The SNR is set to be 20 dB. I /
E e b zero-padded FFT 40000
. L. b % ‘ L‘F this work
Therefore, according to (7) and (8), the accuracy limits of the ®) A
conventional zero-padded FFT method and the proposed é IR [ 78.06
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Simulations are carried out in MATLAB to validate the
proposed technique.

—_
[
o

The center frequency is set to 120 GHz. The bandwidth is set to

be 4 GHz. The sampling rate is set to be 10 kHz. Additive white
Gaussian noise is added to the IF signal with the awgn() ()
function in MATLAB. The SNR is set to be 20 dB.

e zero-padded FFT
N ' this work
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Therefore, according to (7) and (8), the accuracy limits of the 0 Number of padding zeros

conventional zero-padded FFT method and the proposed 2 105

technique are 0.267mm and 0.281mm, respectively. R R Y /
.g L/ ---------- tzlfirso;}v)(z)iiied FFT 40000

Fig. (a) shows the distance estimation root-mean-square- error ®) ? -~ —

(RMSE) with the conventional zero-padded FFT method and N 78.06
= 10°

the proposed technique. 0 2000 4000 6000 8000 10000

Number of padding zeros

Fig. (b) shows the time complexity of the conventional zero-
padded FFT method and the proposed technique.
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The experimental setup of distance
measurement with a custom-built 120 GHz
FMCW radar and a linear-stage Zaber X-
LDMO60C-AE54D12. The inset shows the
detail of the radar.

the radar is made with the radar front-end TRA-120-001 (Silicon Radar) and the PLL chip ADF4159. The 1/Q
signal is sampled by the data acquisition (DAQ) board (National Instruments) for post-signal processing in the
computer. The radar sits around d, = 56 cm away from the linear stage (Zaber X-LDMO060C-AE54D12).

The radar bandwidth is set to 4 GHz, the PRT is set to 6 ms, and the sampling rate is set to 10 kHz. The linear

stage is programmed to perform a sinusoidal movement of 2cm@0.01Hz. The slow frequency is to avoid the
influence of the Doppler effect.
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The measured distance (a)/(b)/(c) with the conventional zero- 20| sero-paddsd FET| —r—
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This paper presents a high-efficient and frequency-resolution free PDA technique for accurate distance
measurement with FMCW radar.

It achieves similar accuracy of the conventional FFT-based distance estimation method while saving over 500 times
of compute resources. The technique is especially suitable for the embedded device which is widely used for radar
systems but only has a limited compute resource.

It should be noted that the proposed algorithm is based on the center phase variation, which makes its accuracy
only comparable to the frequency evaluation method [5]. By combining the center phase as in [4-5], the accuracy of
the proposed technique can be further improved.
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